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ABSTRACT

The electric field effects in paramagnetic resonance consist of shifts

in resonance frequency produced by the application of a uniform electric

field to the magnetic resonance sample. These electric field shifts arise

through variations in the crystal field splittings under the influence of the

applied electric field. In a non-piezoelectric sample, two mechanisms are

considered to be important in producing the electric field induced variation

in crystal field. The optical mode, ionic polarization of the crystal lattice, in

which the anion and cation sublattices move with respect to each other,

produces a variation in the local crystalline environmen; of the magnetic ion

and,hence, in its crystal field interaction; the electronic polarization of the

magnetic ion alters its interaction with its crystalline surroundings, again

producing a variation in the crystal-field interaction. Effects of electro-

striction and piezoelectric distortion are mentioned but not treated in this work.

If the magnetic ion is at a crystalline lattice site which is not a

center of inversion symmetry, there may be an electric field effect which is

linear in the applied electric field. A linear splitting of the paramagnetic

resonance lines of Cr+3 in ruby by 38 gauss was induced by an electric

field of 105 volts/cm parallel to the c-axis. The splitting arises from an

equal but oppositely directed shift of the Cr+3 spin energy levels for two

sites related to each other by the symmetry operation of inversion. The

complete angular dependence of the effect is described phenomenologically

vii



by the addition of a term to the spin Harniltonian (1/2) RIjk Ei (SjSk + SkSj)

j < k . The symmetry of the R-tensor is discussed in terms of the symmetry

of the magnetic ion site. For ruby, this symmetry is C3 , and the five

independent components of the R-tensor were evaluated experimentally by

takivg the applied electric and magnetic fields at several different orientations

with raspect to each other and to the c-axis. These values indicate that one

of the two oxygen ion triangles forming the nearest neighbor oxygen octahedron

dominates the other triangle in producing the crystal field splitting.

The theory of the electric field effect in ruby is discussed, first, in

terms of a point-charge crystal field theory. Such a theory is inadequate to

account for the spectrum of the Cr+3 ion in ruby unless adjustable parameters

are introduced. Even with adjustable parameters, however, the crystal field

theory is still inadequate to account for the microwave spectrum or for the

electric field effects on the microwave spectrum. Turing to a semi-empirical

molecular orbital formulation, the microwave spectrum and the electric field

effects are successfully accounted for. The eemi-empirical procedure con-

sists of diagonalizing an approximate Hamiltonian, whose diagonal elements

eii are determined by free ion ionization potentials and whose off-diagonal

elements are given by %j = -2 (Xiti XjC )l/ 2 Sij. Sij is the overlap matrix

of the atomic orbital basis functions. The spin-orbit interaction is intro-

duced as a perturbation using the molecular orbital wave functions as a

viii



basis set, and it is found that the microwave splittings and electric field effect

arise from an anisotropy in the spin-orbit interaction. The ionic effect is

found to be much larger than the electronic effect.

For Cr+3 in a defect site in MgO, a linear electric field splitting of

the resonance line from two sites is predicted by the molecular orbital theory

to be 0. 9 gauss for an applied field of 105 volts/cm. The sensitivity of the

experiment was not sufficient to detect the effect. If by the extreme adjustment

of suitable parameters, the crjrstal field theory is forced to yield the experi-

mental values of the electric field effect in ruby, the same theory then yields

an effect in MgO which would have been large enough to be easily detectable.

This constitutes an additional piece of evidence for the superiority of the

molecular orbital theory over the crystal field theory.

A quadratic electric field shift in the Cr+3 and Fe+3 magnetic resonance

spectrum in TiO2 is calculated by the molecular orbital theory. The failure

to detect this effect experimentally for Fe+3 is analysed to give information

about the polarizability of the impurity in a foreign host lattice.

In addition to the electric field eftects discussed, the possible existence

of an electronic electric dipole moment would cause a lifting of the Kramers

degeneracy in the presence of an electric potential of odd symmetry. By

attempting to detect the lifting of the Kramers degeneracy in the odd part of

the crystalline electric field for Cr+3 in ruby, it was possible to set a new

ix



experimental upper bound of 1. 4 x 10" cm e on the electric dipole moment

of the electron. The ordinary electric field effect was used to lift the

degeneracy of the two kinds of .Ates in ruby. The significance of this result

lies in the fact that the existence of a permanent electric dipole moment for

an elementary particle would violate both parity and time-zeversal symmetry.

i
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Chapter I

INTRODUCTION, SURVEY OF THE THESIS, AND MISCELLANEOUS TOPICS

Electron paramagnetic resonance provides a sensitive probe of the

surroundings of a magnetic ion in a diamagnetic host lattice. In general, a

paramagnetic ion with spin greater than one half is influenced by the electrostatic

field of its crystalline surroundings through the spin-orbit interaction. Thus,

the Ze.. aan resonance condition on the magnetic field and microwave frequency

is modified to include the effect of the crystalline-field interaction. Under the

action of a uniform electric field applied to the sample, there is a change in

the interaction of the magnetic ion with its surroundings, and a shift in magnetic

resonance occurs. In the usual spin Hamiltonian formulation, all parameters

become a function of the applied electric field.

The Paramagnetic Resonance Phenomenon

The paramagnetic resonance phenomenon has been described in several

review articles [I-l],and the reader is referred to these articles or to the more

elementary texts [1.2] for details.

Consider a free ion. The electron has a spin angular momentum whose

magnitude is given by [S(S + 1)] /2 t where S is an integer or half integer.

Similarly,the orbital angular momentum of the electron is given by [L(L+I)]l/2 t,

Sand the total angular momentum by [J(J+1)•/2I f•. The spin and orbital angular

momenta combine so that J = L + S for shells more than half filled or

J = IL - S I for shells less than half filled. The spin-orbit interaction energy,

1-1
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XL. S, and the electrostatic forces between electrons spli these J levels.

The spin angular momentum gives rise to a magnetic dipole moment

I = 2 - [S(s+l)]luZ (1-1)

If we define the Bohr magneton y -= , we have

JA = 2P [S (S + 1) ]lZ(1-2)

The magnetic moment associated with the orbital angular momentum is

IA = P [ L (L÷+ 1) 1(1-3)

and because of the anomalous factor of two in the spin equation, we

write for the total magnetic moment

A = gp [J (J1)]/2 ] (1-4)

g is given by the well-known Land6 formula

g 3J(J + 1) +S(S+1) - L(L + 1) 0 -5)

The Zeeman effect gives an energy on the application of a

magnetic field

W = -.. H (1-6)

If the projection of J on the z-axis (the z-axis being taken along H) is
KtA

M., and the projection of I is Iz = gpMj, the Zeeman energy is

W =-gp MjH (1-7)

Noting that M must be an integer or half integer, we have 2J + 1

levels separated by

Aw : gPH (1-8)
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From the Bohr frequency condition and noting that AM3 = I, we have the

absorption of power at a frequency

v= gPH/h (1-9)

In a paramagnetic resonance experiment we measure the absorption of

electromagnetic energy as a function of frequency or magnetic field,. %d hence,

determine an experimental value of g from the position of an absorption line.

For free ions or atoms, g is given by the Landg formula, but for

atoms in a aolid, the situation is very different. The ligahds, or ions

surrounding the ion under consideration, produce local electric fields which

act on the orbital angular momentum. This crystalline electric field

interacts with the nonspherical distribution of electrons, which is characterized

by the orbital quantum number. If this interaction is stronger than the spin-

orbit interaction, the L • S coupling is broken down, J is no longer a good

quantum nunmber, and the 2L + 1 degeneracy of the orbital angular momentum

is lifted. The crystalline field in some cases is comparable to the electro-

static repulsion between electrons, in which case the Russell-Saupders

coupling is partially destroyed. In this case, L is no longer a good quantum

number either, and orbital wave functions are characterized by the eigen-

values of the crystalline field. For the transition metal ions of the iron

group this is the case, and the combined crystalline-field interaction and

electron repulsion energy yield orbital energy levels split by optical

frequencies. For the ions of interest here, the ground state is an orbital
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singlet, whose multiplicity is given by the spin. In this case the diagonal

elements of L are "quenched", and the angular momentum and magnetic

moment are simply given by the spin-only formulas, namely, g = 2. There

are, however, small splittings of the ground state produced by the off-

diagonal elements of L between the optical levels, which in turn are split to

a smaller degree by low symmetry components of the crystal field. In

second-order perturbation theory one has

AW = X2 /AWopt . (1-10)

These splittings are typically comparable to the Zeeman energy and are

called zero (magnetic) field or crystal field splittings. There may, also, be

g-value shifts. As an example, in ruby the MS = + 1/2 and MS = + 3/2

levels are split from each other by 11 Gc/sec, which is the Zeeman

frequency for spin 1/2 in a field of 4000 gauss. The energy levels of the

ground orbital state may be described by the spin Hamiltonian, in which the

energy is a function only of S . The zero field splittings are represented

by terms in the spin Hamiltonian which contain even powers of S

Neglecting nuclear spins, electron-electron spin interactions, and the

diamagnetic term, one has the following form of the spin Hamiltonian for

a spin of 3/2 or less

P= 2(8ii - XAi)H.S - -A S.S 2A HH , (1-11)ij I~ j ij 1 J ij i j
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where <h r0 < ILi n> <n IL 0 > (-

Aij - nE - E0

The first term in I- 11 is the usual Zeeman energy, and the second, third,

and fourth arise from off-diagonal elements of the spin-orbit interaction

j L" S, the off-diagonal elements of the orbital Zeeman energy A L . H,

or both together.

Electric Field Effects in Paramagnetic ResonanceI
Now consider a sample of material situated in a paramagnetic

resonance spectrometer and with electrodes applied for the production of

a uniform static electric field across the sample. The construction

of two such spectrometers is described inChapter II. Both were of the

magic tee bridge design; one designed to observe the absorption signal

and the other the dispersion signal.

The application of an electric field to the sample produces a

dielectric polarization of two kinds. [1-3]. If an ionic crystal is considered

and if the electronic polarization of the individual ions is ignored, there

will remain a polarization resulting from the motion of positive and negative

ions with respect to each other. The cation and anion sublattices can be

considered to move with respect to each other, each sublattice remaining

rigid. This may be termed the ionic polarization,or infrared polarization

since it relaxes in the infrared spectral region. From the point of view
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of the magnetic cation, its surrounding anions have moved, and the crystalline

electric field they produce on the cation has changed. This crystalline field,

together with the spin-orbit interaction, gives rise to the zero field splittings,

as shown in Eqs. 1-11 and 1-12 . The crystalline electric field enters

through the energy denominators of Eq. 11-12 . Thus, under the application

of an electric field to a sample, the crystalline field and, hence, the zero

field splittings are altered. This, in turn, results in a shift in magnetic resonance

frequency (or field in a constant frequency spectrometer). It is these shifts

which constitute the electric field effects in magnetic resonance.

The effect originating as described in the previous paragraph may be

termed the ionic electric field effect. There is also an electronic electric

field effect originating from the direct action of an applied electric field on

the individual ions. In considering this effect, the nuclei are kept fixed and

the individual electron clouds are allowed to polarize. This polarization is

represented by a mixing of even and odd electronic wave functions (e. g.

a; -mixing), and this mixing produces a change in the energy levels of the

system. This change in energy levels again is reflected in spectroscopy and,

in particular, in microwave spectroscopy primarily through the zero-field

splitting. As the electronic electric field effect is associated with the

electronic polarization of the ions, so the ionic effect is associated with

the ionic polarization.
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The electric field effects in paramagnetic resonance are closely

related to the effects of pressure on paramagnetic resonance. In both cases

an external stress is imposed on the system. In one case the stress is

electrical; in the other it is mechanical. The paramagnetic resonance detects

an effect of the resultant strain. Walsh [1-4] first of :'erved the effect of

applying hydrostatic and uniaxial stress to a crystal An a paramagnetic

resonance spectrometer. His experiments were carried out on the para-

magnetic resonance of several impurities in MgO and on the resonance of

chromium in two salts. Uniaxial strain experiments have been carried out

on several ions in MgO by Watkins and Feher [I-5] and on ruby by Donoho

and Hemphill [1-6]. Date and Miyako [1-7] have studied the pressure

dependence of the cobalt resonance in TiO2 , and recently other workers have

carried out similar experiments in SrTiO3 and calcite [1-8, 1-9]. Such

experiments provided the suggestion that there might also be observable

electric field effects in paramagnetic resonance.

The electric field effects described here are in addition to the

indirect effect which may exist in a piezoelectric material. In a

piezoelectric material there is the effect that the piezoelectric strain also

distorts the surroundings of the magnetic ion, and a mechanical strain

experiment will separate this effect from the combination of the direct

electronic and ionic effects described previously. Such an experimental
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separation between ionic and electronic effects can not be made, since it is

impossible to produce mechanically the strain associated with the dielectric

lattice polarization.

The actual calculation of the electric field effects, direct or indirect,

involves the rederivation of the spin Hamiltonian in the presence of the

electrical perturbation. This, in turn,leads to the somewhat more general

question of the calculation of the entire electronic spectrum of a magnetic

ion, a subject which has been treated by many authors [I-I]. The spin

Hamiltonian describes the splitting of the optical ground state under the

influence of the Zeeman and crystalline fields. The details of this splitting

involve high order perturbation theory between the ground and optically

excited levels, and this requires a fairly detailed knowledge of the entire

optical spectrum. The traditional approach to this problem involves the

so-called point-charge crystal field model, in which the effect of the

surroundings of the magnetic ion are described by a classical electro-

static crystalline field interaction produced by point charges located at

the sites of each of the neighbors. It will be shown in Chapter IV that

this approach is inadequate to describe the magnitudes of the observed

electric field effects, and a r.olecular orbital calculation will be presented

which does account for the results.

Lineai. Electric Field Effects

A linear electric field effect can exist only if the magnetic ion

is located at a lattice site which is not a center for inversion symmetry

[1-10];if the site has inversion symmetry, there can be only a quadratic
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effect. This arises because a linear effect must reverse its sign on

reversal of the direction of the applied electric field. If there is inversion

symmetry, this is impossible, since there is nothing to distinguish the

positive from the negative directions.

The first linear electric field effects in magnetic resonance were

observed in nuclear pure quadrupole resonance. Kushida and Saiki [1-11]

observed an electrically induced shift in the pure quadrupole resonance of

the bromine nuclei in a single crystal of NaBrO 3 , and Armstrong, Bloembergen,

and Gill [1- 12] observed the 61ctrically induced additional broadening of the

resonance line from chlorine nuclei in powdered KClO 3 and NaC1O 3 . In all

three cases the nuclear site does not have inversion symmetry, allowing

the resonance frequency shift to be linear in the applied electric field. The

crystal KCIO 3 has an inversion center, which means that shifts from two

sites related to each other by inversion are in opposite directions. This effect

was, however, washed out by the use of a powder sample. NaClO 3 and NaBrO3

do not have inversion centers, and true shifts should be observable. The use co

a powder sample of NaClO 3 , however, again obscured this fact. Armstrong,

Bloembergen, and Gill [1-13] have observed electric field broadenings in

p-dichlorobensene, and Dixon [1-14] has observed electrically induced broaden-

ings in several other chlorine compounds. These experiments were all done

on the pure quadrupole splitting of the chlorine nuclei in pblycrystalline sarrnles.

Gill and Bloembergen [1-15] have studied the nuclear magnetic resonance

of Ga and As nuclei in GaAs single crystals. Both Ga and As have nuclear

spin I = 3/2 . In GaAs the lattice sites are of cubic symmetry but do
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not have inversion symmetry. Since the sites are cubic, there is no initial

quadrupole splitting, and a single resonance line is observed in a magnetic

field. Under the influence of an applied electric field, an induced quad-

rupole splitting of the fourfold degenerate spin energy levels occurred.

The single resonance line was split into three lines. Because GaAs does

not have an inversion center, there is also a piezoelectric strain effect,

which was separated out by a pressure experiment.

The first linear electric field effect in paramagnetic resonance was

observed by Ludwig and Woodbury for an Fe impurity in silicon. [1-16].

Through the kindness of Dr. Ludwig, a suitable sample of iron doped

silicon was obtained, and the effect observed by Ludwig and Woodbury was

confirmed qualitatively. Details are presented inChapter II. More

recently, Ludwig and Woodbury have investigated many other ions in the

silicon lattice and have found numerous electric field effects. [1-17]. The

silicon lattice, of course, contains an inversion center, though the

tetrahedral sites themselves do not. As a result of the inversion symmetry

of the lattice, one should consider at least two non-equivalent sites which-

are inversion images of each other. Such sites will be equivalent for

ordinary paramagnetic resonance but will have electric field induced shifts

wkhich are equal in magnitude but dpposite in sign. Thus, while an electric

field effect whic)i consists of a shift in resonance frequency or field is

calculated for a particular transition of an ion at a single site, in fact
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both kinds of sites are observed together. The ground state of the Fe0 ion

in the cubic environment of silicon is threefold degenerate; the effective

spin in the spin Hamiltonian is one. The applied electric field lifts this

degeneracy, and the observed paramnagnetic resonance line in magnetic field

is split into a doublet. The MS = 0 - + I transition and MS = 0 - -1 transition

shift in opposite directions due to the applied electric field; they are

degenerate in the absence of an applied electric field. For one site in the

silicon lattice it is the MS = 0 -" +1 trasition which shifts up in field, while

for the other site, it is the M= 0 -- -1 transition which shifts up, but of

course, this cannot be observed because of the initial degeneracy.

Chromium substituted in MgO enters the lattice primarily by

substituting for magnesium at sites which have inversion symmetry and are

in fact cubic [1-18]. Such ions should not show a linear electric field effect.

Some of the ions, however, will have a vacancy at the site of the nearest

magnesium neighbor in a 100 direction for purposes of charge compensation.

This gives rise to a site which has axial symmetry and which is not an

inversion center. Cr +3 , with an effective spin of 3/2 has two Kramers

doublets in the optical ground state for the axial site. The application of

an electric field should alter the initial splitting between the MS = + 1/2 and

MS = + 3/2 doublets, and should cause a shift of the MS = 1/2 - 3/2

transition. Since this transition is non-degenerate for a particular

axial site, a shift rather than a splitting of the resonance line should

be observed . As in the silicon lattice , however , there is an
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inversion center in the MgOlattice, and two sites which are inversion

images of each other must be considered. These sites should have

electrically induced shifts of opposite sign and a single resonance line

should be observed apparently being split into two components moving in

opposite directions under the application of the electric field. While one

could speak of the electric field splitting , it should be remembered that

in this case there would be only an apparent splitting of the observed

resonance line arising from all of the spins in the solid. Microscopically,

there would be an electrically induced shift in the resonance line and in

the energy levels giving rise to it.

An attempt was made to detect an electric field splitting of the

resonance line from ions in the axial sites in MgO, but none could be

detected, and an upper bound was determined by the experiment. This

bound is of some importance to the theory of the electric field effect in

ruby,since the point-charge crystal field theory of the electric field effect

in ruby, when scaled by the value of D in MgO, predicts an effect in MgO

ten times larger than the experimental upper bound. The molecular

orbital theory, however, is able to account for the smallness of the

electric field effect in MgOAs compared to the electric field effect in ruby.

The situation of the chromium ions in ruby [1-19, 1-20] is similar

to that in MgOin that, while the crystal has inversion symmetry, the

individual sites do not. Thus, electric field induced shifts in the resonance
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lines from individual sites combine to produce an observed electrically

induced splitting of the line. Details of the symmetry of the sites in ruby

are presented in Chapter I1I. The electric field induced splitting in ruby

was first detected by Artman and Murphy [ 1-21]. These experiments were

duplicated, and the angular dependence of the effect was determined. Further

details of this worJ ,re given in Chapter Ifl and have beeft reported [1-22]

and published elsewhere [1-23].

Second-Order Effects

For sufficiently strong electric fields it should be possible to observe

a second-order electric field effect proportional to the square of the applied

electric field. In TiO2 the large dielectric constant would indicate that the

indirect electric field effect on magnetic resonance should be large. The

second-order ionic effect was calculated for the resonance of Fe+3 in TiO2

[1-24] by the molecular orbital method . Experimentally the effect

could not be found, and an upper bound was set which is an order of

magnitude smaller than the calculated effect. T'Lis experiment is inter-

preted in Chapter V to give details about the electrical polarizability of

the impurity in the strongly dielectric host lattice.

Recently, Weger and Feher [1-25] have reported second-order

electric field effects in the paramagnetic resonance of Cr+3 in ruby and of
r+3 +2

Cr+ and Co in MgO . These experiments are discussed in Chapter IV.
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Permanent Electric Dipole Moments

The observed electric field effects should not be confused with the

possible existence of an intrinsic electric dipole P = 2 AS which would

give rise to a term in the Hamiltonian -21P. E. P is the Bohr magneton;<

Sis the pseudo-scalar. A consequence of such a term is that the Krarners

degeneracy would be lifted by an applied electric field or by any electro-

static potential of odd symmetry, such as the odd terms in the crystalline

potential. The effect of such a term on paramagnetic resonance has been

calculated by Sachs and Schwebel [1 -26],who predict a line shift of the

order
- Vu - E 2.(1-13)

AW=)W uWW)s crystal applied

Browne [1-27] has experimentally attempted to detect such an effect using

an externally applied electric field, with negative results.

The term e" c V V su however, is much larger than, nycrystal I

applied field, and a scheme was devised to check the existence of a

permanent electric dipole using this fact. This experiment on ruby has

yielded an upper bound on the electric dipole moment of the electron which

is three times lower than the limit, set by the ilectron beam experiments

of Nelson, et. al.,[1-28]. Further details are given in Chapters II and VI.



Chapter II

EXPERIMENTAL PROCEDURES, APPARATUS, AND RESULTS

The paramagnetic resonance phenomenon has been described in

Chapter I [2-1]. Experimentally, one has a sample oi paramagnetic material

absorbing power at certain frequencies, which are determined by differences

in the eigenvalues of the spin Hamiltonian. These frequencies are a fairly

complicated function of the magnitude of the applied magnetic field and of the

orientation of the magnetic field with respect to the crystallographic axes.

The paramagnetic resonance spectrometer is a device for detecting the

absorption of a small amount of power by such a sample. Experimentally,

the magnetic field at resonance absorption is measured as a function of the

angle of the magnetic field with respect to the crystallographic axes, the

microwave frequency being held fixed. In this work, a uniform electric

field was applied to the sample as well, and the resultant shifts of the value

of the resonance field were studied. Usually, these shifts appeared as

splittings of the observed line.

Practical Considerations in Paramagnetic Resonance Experiments

Of considerable practical importance in spectroscopy is the width

of the observed resonance line. Not only is the position of a broad

resonance line difficult to resolve, but also, the spreading of the absorption

over a wide spectral region weakens the intensity of absorption at a

particular point.

Spin-spin interactions between the resonant ion and some other like

or unlike ion causes an effective local variation of the magnetic field acting

on the resonant ion. Random fluctuations in time or space in these local

2-1
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variations produce a line broadening. Dilution of the magnetic ions in a

diamagnetic host lattice will reduce this broadening mechanism as much as

desired. There may also be an exchange interaction between the like magnetic

ions, which broadens the base of the line but sharpens the peak. It, too, is

reduced by dilution.

Nuclei may have small magnetic moments, and the hyperfine interaction

between the nuclear moments and the electron moment of the resonant ion may

either split the line into a series of lines or may broaden the line. Fortunately,

for the materials used in this work, hyperfine splittings and broadenings are

of no importance, since most of the nuclei have no magnetic moment.

The lifetime of a state produces an uncertainty in its energy given by

the usual quantum mechanical uncertainty relation. In the case of the ions used

in this work, the relaxation rates are sufficiently slow so that this is no

problem. In some cases lifetime broadening may be fairly serious. The

relaxation of spins from one state to another takes place by means of the

coupling of the spins to the crystalline lattice through the spin-orbit and possibly

the spin-spin interactions. The direct process involves emission of a single

phonon of lattice vibration, while the Raman-like process involves two phonons.

The direct process is proportional to 1/T and dominates at low temperatures,

while the Raman process has a faster temperature dependence and dominates at

higher temperatures. These simple interactions may be further complicated
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by interactions with defect centers or clusters of impurity atoms. A more

serious problem arising from the lifetime occurs if the lifetime is too long.

In this case, only a small amount of power can be absorbed, and the

sensitivity is severely reduced. This problem will be dealt with further.

The dominant line broadening for the ions of interest in this work

arises from variations in the crystalline field splitting. Such variations

from point to point in the lattice arise from defects in the lattice structure.

The selection rules on the transition probabilities for magnetic dipole

transitions require that the radio frequency magnetic field be at right angles

to the static magnetic field. In the presence of zero-field splittings, and

with the magnetic field not taken along the axis of quantization of the

crystalline field, these selection rules break down due to mixing of the wave

functions. However, transition probabilities are still favorable with the radio-

frequency magnetic field perpendicular to the static magnetic field, except

at very low fields.

The Absorption Spectrometer

In order to enhance the interaction of the sample with the microwave

field, the sample is placed in a resonant microwave cavi*y [2-2]. The

spectrometers constructed for this work employed a rectangular waveguide

cavity operating in the TE 0 1 2 mode (Fig. 2-1). The sample was located at

the center of the cavity at a position of the maximum transverse microwave

magnetic field. The static mnagnetic field was applied normal to the broad

face of the waveguide, making it perpendicular to the microwave field, in
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keeping with selection rules mentioned. In the work on ruby, in order to

rotate the magnetic field with respect to the crystallographic axes, the sample

was kept fixed in the cavity, and the entire spectrometer was rotated in the

magnetic field. Less favorable transition probabilities were then encountered,

but this proved not to be disastrous. Provision was made to adjust remotely

the resonant frequency of the cavity and the coupling of the cavity to the input

waveguide. Adjustment of the coupling was accomplished by moving a teflon

wedge in a section of waveguide beyond cutoff. A small tuning adjustment

was made by screwing a threaded teflon rod into the cavity. Control rods

for both operations were placed inside the waveguide; a waveguide bend at

the top of the spectrometer assembly allowed the control rods to leave the

waveguide.

Microwave power, generated by a Varian Associates X-12 klystron,

was reflected from the cavity and compared to that reflected from a matched

load by means of a magic tee bridge. The amount of power reflected is

adjusted by adjusting Cie coupling. This reflected power is proportional to

the Q of the cavity andthence, to any power absorption. When the para-

magnetic resonance condition is fulfilled, the sample absorbs a small

amount of power, and the power reflected changes accordingly (Fig. 2-2).
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The magnetic field was modulated by Helmholtz coils at 50 cps,

and the output of the microwave detector was fed to a phase detector deriving

its reference from the same 50 cps generator. The output of the phase

detector is the derivative of the absorption line and was recorded as the

magnetic field was slowly swept. A low noise transistorized preaxmplifier

designed by S. C. Prevot was used before the phase detector, and this

contributed much to the sensitivity of the apparatus.

The microwave detectors used are square law devices, that is, the

output voltage is proportional to the square of the incident microwave signal

voltage. A small change in the incident microwave voltage produces a change

in the detected output voltage proportional to the product of the change in

incident voltage and the average microwave voltage. This means that it is

desirable to have as much power incident on the detector as possible subject

to certain limitations.

If a crystal detector is used, the signal-to-noise-ratio is limited

by the 1/f noise of the crystal diode. This noise is proportional to the

power incident on the detector and limits the incident power which may be

used. A bolometer detector is much less sensitive than a crystal detector

but has the advantage that the incident power may be much higher. Because

of this, the use of bolometer detection improved the sensitivity of the

spectrometer by a factor of three over crystal detection.
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A much more serious source of noise results from the FM noise

present on the klystron output. This noise is converted to amplitude

variations by the dispersion associated with the cavity resonance. An

order of magnitude decrease in spectrometer noise resulted from stabilizing

the frequency of the klystron to the sample cavity. The response time of the

stabilization system was made fast enough to reduce greatly the FM noise in

the spectral region below one kilocycle. The stabilization was accomplished

by introducing a small 26 kc/sec voltage on the klystron reflector in order to

produce a small amount of FM on the klystron. This FM is converted to an

AM signal on reflection from the cavity, and tke phase of this AM depends on

whether the resonant frequency of the cavity is above or below the klystron

frequency. Phase detection at 26 kc/sec results in an error signal suitable

for correcting the frequency of the klystron, and this voltage is introduced

on the reflector of the klystron. This is a conventional system of klyutron

stabilization.

The trouble with the bolometer detection system arises from the

relatively high power level at which it must operate. Some of the magnetic

resonafice transitions were saturated at this power level, greatly reducing

sensitivity. This was particularly a problem where the samples were cooled

to liquid nitrogen or liquid helium temperatures. In these cases the

crystal detector gIve much better results. Most of the work to be reported



2-7

was done with these two configurations of the spectrometer. The bolometer

used was a Narda 61OB; the crystal, a selected Sylvania 1N26.

Frequency measurements were usually made with a commerical

wavemeter since there was no need for an accurate absolute frequency

measurement. However, provision was made to check occasionally the

klystron frequency against harmonics of a Gertsch FM-4A UHF generator

phase locked to a Gertsch FM-6 precision VHF generator. The stability of

the klystron frequency when locked to the sample cavity was verified in this way.

The sensitivity of the spectrometer at room temperature, using bolom-

eter detection, and in the absence of saturation, was roughly estimated at

4 x 10 12AH spins for unity signal-to-noise ratio: and for an integration

time of 0. 5 sec. Samples were prepared in the form of plates usually one

half or one fourth millimeter in thickness. The sample cutting and grinding

were skillfully done by S. Maurici. X-ray orientation was done when

necessary. Silver electrodes were evaporated on the two sides of the sample

to provide an electric field, and 0. 005 inch copper wires were ultrasonically

soldered to the sample with indium to provide leads to the electrodes. Other

methods of attaching electrodes to the sample were tried but proved unreliable.

The sample was then entirely coated with an insulating material to prevent

electrical arcing from one electrode to the other around the edge of the

sample. Voltages up to six times the breakdown voltage of an uninsulated

sample were used. For room temperature measurements polystyrene
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Q-dope was found to be a good insulating material for this application. At

liquid nitrogen and liquid helium temperatures Flexrock #80 cement was

found to hold its strength, not to crack, and to provide adequate electrical

insulation. The sample was supported in the microwave cavity by the two

high voltage leads, which were brought into the cavity through large holes

in the sides.

It was found that the presence of heavy silver electrodes on the sample

greatly perturbed the cavity in two ways. First, the microwave field was

shielded from the sample, so that interaction with the sample was weaker than

with an unplated sample. Second, the cavity Q was greatly lowered,

presumably due to 1, ses in the silver. These effects were minimized by

making the evaporated silver electrodes much less than a microwave skin-

depth in thickness. Such a coating is partially transparent optically but still

has sufficient direct current conductivity to provide an electric field on the

sample.

The magnetic field was measured by monitoring the proton nuclear

magnetic resonance in a sample of water containing a smallrnount of ferric

nitrate. A modified Pound-Watkins [2-3] marginal oscillator was used in the

*General Cement Mfg. Co., Rockford, Illinois

**Flexrock Co., Philadelphia 1, Pennsylvania
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spectrometer; the circuit was designed by J. Jeener. For magnetic fields

low enough so that the proton resonance frequency was below 10 Mc/sec, the

frequency of the spectrometer was counted on an LFE counter after suitable

buffering. For frequencies above 10 Mc/sec, the beat was obtained between

the Pound box and the harmonics of a war surplus frequencynmeter of

fundamental frequency between two ant our Mc/sec. The frequency meter

was then counted on the LFE counter. An oscilloscope presentation of the

NMR signal was used.

The Dispersion Spectrometer

The second spectrometer built was similar to the first except that

the frequency of the microwave source was locked to a second cavity rather

than to the sample cavity. By introducing a ninety degree phase shift in

the microwave signal from the reference arm of the magic tee, the spectrom-

eter can be made sensitive to the dispersion component of the magnetic

resonance rather than to the absorption component.

Portia [2-4] has shown that for an inhomogeneously broadened line,

such as those dealt with in this work, saturation of the resonance is not as

severe if one looks at the dispersion signal rather than at the absorption

signal. In addition, when tuned to the dispersion mode, one -nay obtain

adiabatic rapid or fast passage signals as discussed by Portis and by

Weger [2-5]. These, also, give a usable signal under saturation conditions.

Such was indeed found to be the case, and this spectrometer was used in the

experiments which attempted to dete t an electric dipole moment of the electron.
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Experimental Work

The chromium impurity in magnesium oxide [2-6] enters the lattice

predominantly at sites which have a cubic environment as evidenced from

the magnetic resonance spectrum. Such a site should be an inversion center

and, hence, cannot show a linear electric field effect. A few percent of the

chromium ions are found at sites such as to yield a spectrum of axial

symmetry. It is thought that in this site there is a magnesium vacancy at a

magnesium site alon$ a 100 direction. The spectrum is described by the

following spin Hamiltonian

gC H.S+D[S2 -(1/3) S(S+1)] , (2-1)

where D = 2. 5 Gc/sec, g = 2. 00, with the z-axis along a 100 direction. Thus,

if the magnetic field is applied along a 100 direction, it will be in the x-, y-,

or z-direction for each third of the sites. The sites where the field is

perpendicular to the z-axis give one spectrum, and the sites where the field

is parallel to the z-axis give another spectrum.

We assume that any electric field effect will result from moving the

magnetic ion nearer to or farther from the vacancy, and this will result

only if the electric field is also along the z-axis of the site. Thus, by taking

both E and H parallel to each other and along a 100 direction, the z-axis

spectrum should show an electric field effe K but the x- and y-axis spectra

should not.
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Cr... in MgO was the first material studied for a possible electric

field effect, and most of the techniques were perfected on this material.

Single crystals were obtained from the Norton Co. via W. M. Walsh, Jr.,

of the Bell Telephone Laboratories and M. Cohen of this laboratory. Initial

measurements were made on a sample with silver painted electrodes at a

field of 20 kv/cm. The presence of the electrodes reduced the signal-to-

noise ratio for the axial site line from 100 to 10 and significantly lowered the

Q of the cavity. Only a fairly small sample could be used in order to prevent

the electrodes from extending significantly into the E-field region of the

cavity. An upper bound of 0. 3 gauss was set for the electrically induced

line broadening; the line width was 8 gauss. Since the fracticnal broadening

of the line is proportional to the square of the fractional splitting, this implies

that the splitting induced by the electric field was less than 2 gauss, or

0. 3 Mc per kv/cm. Better techniques for insulating the sample lowered this

bound to 0.15 Mc per kv/cm.

By going to liquid helium temperature, the signal-to-noise ratio was

increased by an order of magnitude. Heavy silver-plated electrodes were

introduced at this time. In order to take advantage of this enhanced signal-

to-noise ratio, it was decided to modulate with the electric field and to

phase detect. An electric field of 18 kv/cm rms was applied to the sample

at 60 cps, and the magnetic field was strongly modulated at 170 cps. Since

the electric field broadening goes through a maximum twice for each cycle
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of the electric field modulation, the combined electric and magnetic modulation

should produce a signal at 50 cps. The large 170 cps signal was eliminated

with a tuned filter, and the remaining signal was fed to a 50 cps phase

detector, whose reference signal was synthesized from the two modulating

signals. It was found that there was some 120 cps signal present, but this

was presumably due to vibrations produced by electrostatic forces; it was

eliminated by the phase detector. A signal was indeed detected at 50 cps

using the phase detector, but this signal was present on both the spectra for

which the fields were parallel to the z-axis and for which the fields were

perpendicular to the z-axis. Since only one of these spectra should show an

electric field effect, it was concluded that the signal was spurious. It is not

difficult to think of mechanisms by which such a signal could be produced.

Because of this spurious signal, it was not possible to take advantage of the

enhanced signal-to-noise ratio, and the upper bound on the effect determined

by this experiment was actually worse than previously obtained.

Considerably better techniques for insulating the sample were evolved

during the work on the ruby, and following this work, the experiments on

MgO were repeated. With the sample at liquid helium temperatures, a

signal-to-noise ratio of 200 was attained on a thin sample with semi-transparent

evaporated silver electrodes. Whereas previously, contact to the evaporated

electrodes had been a pressure contact, leads were now soldered to the sample.

Higher fields were attained by the use of a thin sample, but at a corresponding

loss in signal strength. With the samples used previously, a signal-to-noise
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ratio of 1000 should have been possible in this arrangement. Alternately,

a DC electric field of 170 kv/cm and an AC field of 80 kv/cm rms were used,

the phase detection scheme being employed in the latter case. Again a stray

signal prevented the theoretical sensitivity of the modulation system from

being attained, and the upper bounds as determined from the AC and DC

experiments were essentially identical. The sensitivity to the electric field

broadening was increased over previous measurements by an order of

magnitude, and the upper bound on the electrically induced splitting was

determined as 0. 05 Mc per kv/cm, which corresponds to a shift in D of

0.01 Mc per kv/cm or 4 x 10.7 cm"1 per kv/cm. The molecular orbital

theory predicts a shift in D of 3 x 10"7 cm"1 per kv/cm; while scaling the

Artman theory of ruby by D1/2 gives a shift of 4 x 10-6 cm- per kv/cm

(see Chapter IV).

Iron enters the TiO2 lattice [2-7] substitutionally for the titanium, the

local environment being orthorhombic. There are two kinds of sites, both

with their y-axes along the c-axis of the crystal. The x-axis of one site and

the z-axis of the other are along a 110 di2ection. The spin Hamiltonian is

3c= gpH" S+D [Sz - (1/3)S(S + 1)]

42

+ (7/36) F 4S4 + [5/7 - (6/7)S(S + 1)] S2

- (6/35)S(S + 1) + (3/3 5) S2 + 1)2y+ E SX2 - Sy 2 (2-2)

where D = 20. 4 Gc/sec, E = 2. 2 Gc/sec, a = 1. 1 Gc/sec, F = -0. 5 Gc/sec,

g = 2. 000 . The dominant terms aside from the Zeeman term, are the D- and

E- terms. The terms quartic in the effective spin will be ignored since they are

small and rather more difficult to calculate. Samples of iron doped TiO2 were
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obtained from the National Lead Company, South Amboy, New Jersey, but

were found to be unusable because of DC conductivity. Apparently, this

conductivity is due to a non-stoichiometric titanium oxygen ratio. Stoichio-

metric samples were grown by Solid State Materials Company, East

Natick, Massachusetts, and these samples were used in this work.

First experiments done on Fe in TiO were at room temperature
2

using a fairly large sample, which yielded a signal-to-noise ratio of 500. The

applied electric and magnetic fields were taken along the c-axis of the crystal,

which is the y-axis of the magnetic site. The + 1/2 transition was observed.

Electrodes were heavy silver plate with pressure contacts for the leads.

Working at an applied field of 60 kv/cm, an upper bound was placed on the

second-order electrically induced shift in resonance frequency. This bound

on the shift is 1 x 10- of the resonant frequency, which is just the effect

predicted for this field and orientation (see Chapter V).

Attempting to increase sensitivity, the resonance was examined at

liquid helium temperature, where a comparable signal-to-noise-ratio

was observed for a sample some ten times smaller. The absorption signal

was totally saturated, and thie dispersion signal was observed [2-4]. In

order to tune the absorption spectrometer for dispersion, the reflection

from the "matched" arm of the magic tee bridge was made larger

than the reflection from the cavity arm and was tuned 90 degrees out-

of-phase with the signal from the cavity arm. To minimize the effects
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of FM klystron noise, the klystron was stabilized on the resultant total

response of the bridge. It is estimated that this tuning yielded some 10 0o

of the dispersion signal. The dispersion spectrometer was not constructed

until some time later; it would have greatly helped in this work. The signal

observed [2-4, 5] was a mixture of an adiabatic rapid passage signal, with

the shape of the absorption line (Portis case II A, Weger case 2 ), and the

slow passage signal, having the shape of the derivative of the dispersion

(Portis case I, Weger case 1). These signals can be separated,since the

former occurs 90 degrees out-of-phase with it -pect to the field modulation.

An electric field effect was observed using 44 kv/crri rms electric

field modulation and the phase detection scheme described for the MgO

experiment. The magnitude of the effect was comparable with that predicted

by the theory, but there was no way of knowing that the effect was not spurious.

If the magnetic field is taken along a 110 axis, it will be oriented

along the z-axis for one site and the x-axis for the other. Whereas for the

z-axis spectrum, the + 1/2 line will not show an electric field effect, this

transition in the x-axis spectrum should show an effect Zl5 times that for

the same transition in the y-axis spectrum previously observed. Unfortu-

nately, this orientation of the sample i equired placing the sample with the

microwave electric field lying in the plane of the electrodes rather than

normal to them as previously. While the sample was in a low E-field region

of the cavity, the field was not zero, and this resulted in more than an order
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of magnitude reduction in cavity Q and sensitivity. A somewhat larger sample

was used, and a signal-to-noise ratio of 100 was attained at liquid helium

temperature on the dispersion signal. A field of 44 kv/cm rms was applied,

phase detection was used, and no effect could be detected on any transition.

An upper bound on the electrically induced shift in the resonance of 1 x 10

times the resonance frequency was set, whereas the calculations predict

2 x 10.4 for this field and orientation. Ultrasonically soldered high voltage

leads to the electrodes were used in place of pressure contact leads,

increasing the reliability of this measurement over previous ones.

Experiments were also tried using carbon electrodes similar to those

used in the silicon experiments, but the results were no better than the best

results using silver electrodes.

Ludwig and Woodbury [2-8] observed the first linear electric field

effect in paramagnetic resonance by studying the Fe 0 impurity in silicon.

Through the kindness of Dr. Ludwig, a suitable sample of doped silicon was

obtained and the effect was qualitatively confirmed. Because of the temper-

ature sensitivity of the inpurity centers, the high temperatures required

for the production of evaporated silver electrodes prohibited their use.

Electrodes were formed from carbon paper by painting paper with a thin

coating of Aquadag. These electrodes were sufficiently resistive not to

perturb seriously the microwave cavity. Subsequently, in the work on

the ruby resonance, such electrodes were found to be unreliable, and this

may explain some of the difficulty experienced.
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The experiments were done at liquid helium temperature in order to

have sufficient sensitivity for the small spin concentration present. Unfortu-

nately, as was pointed out above, the spectrometer used was only sensitive

to about i0070 of the dispersion signal, and since the spins were totally

saturated at any usable powe-- levels, the signal-to-noise ratio was rather

bad. A chromium doped sample of silicon gave a similarly poor signal-to-noise

ratio, and work on these materials was dropped at this point.

The experimental results of the electric field effect in ruby are the

subject of Chapter UI . The experiments on ruby were done on small plates

1/4 mm thick with thin evaporated silver electrodes. Leads to the electrodes

were ultrasonically soldered to the sample prior to the evaporation of the

electrodes. The electrodes were much thinner than one microwave skin

depth and did not produce a serious perturbation of the cavity. Fields up to

200 kv/cm were applied to suitably insulated samples. The work on the

angular dependence of the effect was all done at room temperature, where

a signal-to-noise ratio of 100 was obtained.

In cutting the plates, x-ray orientation to + 1/20 was done. The

orientation of the samples with respect to the magnetic field was determined

from the angular dependence of the magnetic resonance spectrum. This

gives the polar angle from the c-axis, but unfortunately the spectrum is

insensitive to the azimuthal angle. Samples were prepared in which a

second plate was cemented to the first, the c-axis of the samples being



2-18

orthogonal. Observing the dependence of the spectrum from this composite

sample on the orientation of the magnetic field allowed one to determine

both the polar and azimuthal angles of the magnetic field.

In ruby, an apparent splitting of the resonance line is produced by

the sum of the ordinary electric field effect discussed previously and the

possible effect of a permanent electric dipole moment acted on by the

crystalline field. In Chapter VI it is shown that if either the applied electric

or magnetic field is reversed, the relative signs of these two terms change,

allowing them to be separated.

Experiments were made on ruby to attempt to detect the possible

existence of an electronic electric dipole moment using this fact. In an

attempt to increase sensitivity, the experiment was tried at liquid helium

temperature. The dispersion spectrometer was constructed for this

experiment in order to observe the dispersion signal, the absorption being

totally saturated. Unfortunately, the signal observed was a mixture of

two signalp [2-4, 5]: a signal having the shape of the usual dispersion

derivative, and a signal with the shape of the absorption line. The latter is

an adiabatic rapid fast passage signal (Portis case IIIB, Weger case 7), and

has been further discussed by Feher [2-9]. The addition of the dispersion

derivative signal probably comes from a partial breakdown of the aliabatic

condition (Weger case 10) or of the rapid passage condition (Weger case 1,

Portis case I). The lines are similar in shape to those observed by
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Solomon and Ezratty [2-10] in nuclear magnetic resonance. The two

components are 180 degrees out-of-phase so that they essentially cancel

in the central region of the line. Thus, the resultant line was much

weaker than predicted and also much broader in appearance. This precluded

doing the experiment at helium temperatureand the work was done at liquid

nitrogen temperature.

Previous work on the electric field effect in ruby had used Linde ruby

+3
of 0.0 D '7 Crr concentrations. In this work searching for a possible dipole

moment, a stronger signal was obtained from 0. 170; Cr+3 ruby from the

Adolf Meller Company, Providence, Rhode Island. At higher concentrations

than 0. 1707 the line is wider than the 17 gausp hich seems to be the

minimum line width obtainable. Somewhat heavier silver electrodes were

used for greater reliability. As a result, the signal-to-noise ratio was only

slightly better than that obtained in earlier work with a more dilute but

larger sample at room temperature.

Eight runs were made in which the electrically induced splitting of

the -1/2 to -3/1' transition was observed for varying polarities of the applied

electric and magnetic fields. The applied electric field was 175 kv/cm. The

change in the observed splitting on reversing either the electric or the

magnetic field was found from these runs to be 0. 025 + 0.125 gauss. The
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uncertainty arises primarily from instabilities in the electronics associated

with the experiment. Improved electronics would probably allow a better

upper bound to be placed on this quantity.



Chapter III

EXPERIMENTAL RESULTS, RUBY ELECTRIC FIELD EXPERIMENT

The electric field effect in ruby was first detected by Artman

and Murphy [3-1] . These experiments were duplicated, and the angular
S

dependence of the electric field effect was measured. The results have been

reported [ 3-2] and are to be published [3-3]

Figure 3-1 showavthe apparent splitting of the paramagnetic resonance

line of chromium in ruby [3-4] under the influence of a uniform applied electric

field. Both electric and magnetic fields were taken parallel to the c-axis of

the ruby, the orientation which gives the largest effect. This is the orientation

used by Artman and Murphy. Examination of such absorption curves shows

that there is no residual unsplit line at the center of the pattern, that neither

rplit component is appreciably broader than the original resonance line, and

that the center of the unsplit line is midway between the centers of the two

components.

Figure 3-2 shows thedependence of this splitting on the strength of the

applied electric field for several samples. The effect is linear in the

applied electric field for splittings greater than one linewidth. Data for

individual samples shows a scatter of 1% from linearity, though different

samples differ by as much as '" from one to the other. This difference

is due to variations in the preparation of the electrodes on the samples,

such as, for example, the closeness of the plated area to the edge ot the

sample. The two boules were both from the Linde Company. The first

was a slow grown boule produced in 1960; the second was a somewhat older

3-1
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standard ruby boule (probably produced in 1958). The Cr 3 + concentration in

both boules was 0. 05%. The electric field splitting was also observed in a

0. 17% Cr 3 + sample from the Adolf Meller Company, Providence, Rhode Island.

No effect of concentration was observed, nor was there any change in going

from room temperature to liquid nitrogen temperature. Unless otherwise

indicated,all measurements reported were made at room temperature.

For small electric fields one, of course, observes only an apparent

additional broadening of the resonance line over the initial linewidth rather

than a splitting. As one can calculate, this additional broadening is proportional

to the square of the splitting and,hence,is proportional to the square of the

applied electric field.

Change in linewidth Sglittin, 2
Linewidth ( Linewidth (3-1)

Figure 3-3 shows the experimental confirmation of this fact. Surprisingly,

the square law seems to be valid for additional broadenings up to 75% of

one linewidth. Linewidths were taken as the distance between points of

maximum slope of the absorption. Comparing this figure with Fig. 3-2

gives an experimental evaluation of the constant k = 0. 90 + 0. 05 .

Equation 3-1, together with this value of k, is then used to evaluate the

splitting for orientations where the electric field effect is too small to

give more than an apparent broadening of the line. When the splitting is

calculated in this way from a line broadening, it is called thu effective

splitting.
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Figure 3-4 shows aportlon of the structure of ruby and is taken from a

paper by Geschwind and Remeika [3-5]. Note that there are four distinct,

non-equivalent sites for the chromium to substitute for aluminum. As far

as the magnetic resonance spectrum is concerned, these sites are all

equivalent for chromiumn, but under the influence of an applied uniform electric

field, each site behaves differently. Sites b and c in the figure are related

to each other by the symmetry operation of inversion through the metal atom,

as are f and a c and a are related by reflection in a vertical inirror

plane normal to the y- or A-axis, as are b and f . The difference between

b and c on the one hand and f and a on the other hand is the result of

a 4. 30 :otation of one half of the oxygen triangles forming the environment of

the metal atom, as the figure shows. Since none of the sites is an inversion

center, the application of a uniform electric field produces a linear shift in

the resonance value of the magnetic field for each particular site, and an

equal but oppositely directed shift of the resonance field for the site related

to the first by inversion symmetry. These opposite shifts of the resonance

lines from the two sites produce an apparent splitting of the resonance line.

In the optical case, Kaiser, Sugano, and Wood [3-6] have termed this kind

of effect a pseudo-Stark splitting.

The angular dependence of this electric field effect was measured by

varying the directions of the applied electric and magnetic fields. There

is an electric field induced shift of the energy levels giving rise to the

paramagnetic resonance transitions, and this shift may be described

formally by additional terms in the usual spin Hamiltonian describing

these levels:
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Sg HzSz + g (HxSx + HySy) + D[ Sz 2 - (1/3)S(S+ 1)]

+• ý (1/2) RijkEi (SjSk + SkSj) + I TijkEiHjSk. (3-2)

i j < k ijk

The first three terms are the usual spin Hamiltonian with g 1. 98,

D = - 0. l.±2 cm 1, S = 3/2 . The term containing the R-tensor is a

perturbation of D , while the T-tensor term is a perturbation of g . Making

use of the C 3 symmetry of the chromium site, these tensors take the forms

below, where 1, 2, 3, refer to x, y, z, respectively.

S1 
2  S 2  S32 (-1)(S2 S3 +S3 S2 ) (-•)(SlS 3 +S 3 S1 ) (4-)(SIS2 +SzSI)

E 1 R111 1 -R1 1u 0 R1 2 3  R113 -2R 2 2 2

E 2 - R 2 2 2  R 2 2 2  0 R1 1 3  -R123 -2Rul

E 3 R 3 11  R 3 1 1  R 3 3 3  0 0 0

(3-3)

SIH SAH S3 H3 S2 H3  SIH 3 S1H 2  S 3 H2  S3 H1  S 2 H1

E1 T11 ill 11 10 T23 T113 -T222 T132 T131 -T222

E 2  -T 2 2 2 T 2 2 2  0 T113  -T 1 2 3 -T 11  T1 3 1  -T 1 3 2 -T i1

E3  T31  T3 1 1  T 3 3 3 0 0 0 0 0 0

(3-4)
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The trace of the perturbation R W may be taken equal to zero, in which
J

case one has R = - (/2)R 3 3 3  This gives five independent components

in the R-tensor. If the trace of the perturbation is not taken equal to zero,

there would be six independent components, but one of them could not be

evaluated experimentally. The terms may be grouped into three groups, one

longitudinal term, two transverse, and two skew terms, according to the

orientation of the magnetic field with respect to the c-axis of the crystal. The

longitudinal term appears with the applied electric and magnetic fields parallel

to the c-axis as was the case for the previoualy quoted results, and is

described by R 3 3 3 ' This is the term e, aluated by Artman and Murphy. The

transverse terms involving RllI and R 2 2 2 and the skew terms involving

Rl13 and R123 come from a transverse electric field with the magnetic field

transverse or skew to the c-axis, respectively. All but the longitudinal term

give no first-order contribution to the energy if the states are unmixed, as

is the case if the magnetic field is parallel to the c-axis. A transverse

component of the magnetic field is required to mix the states and thus to

bring in the transverse and skew terms linearly in the perturbation.

With the magnetic field parallel to the c-axis, there may, however,

"be a quadratic electric field effect from the transverse and skew components

of the R-tensor, as can be calculated from the second-order perturbation

theory on the pure state wave functions. This would be in addition to the

linear effect from R333 except for certain transitions.
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It was found possible to fit all of the experimental results using

only the R-tensor, and for this reason only the R-tensor is considered in the

following analysis. Limits on the values of the components of the T-tensor

may be estimated from the experimental uncertainties quoted on the values

of the components of the R-tensor. It is not surprising that the T-tensor

may be ignored since g is close to the free spin value. The crystalline

field effects on g are hence small, and one should not expect a detectable

electric field effect.

The usual spin Hamiltonian has been diagonalized by Chang and

Siegman [3-7] for arbitrary angles of the magnetic field with respect to the

z-axis, and their wave functions were used as a basis set for evaluating

the electri, field perturbation. The effect of the electric field terms was

evaluated in first-order perturbation theory by taking diagonal elements

between these wave functions. The wave functions calculated by Chang and

Siegman may be written

l> =a13/2> + bl1/2> + c 1-1/2> +dI-3/2>. (3-5)

Writing out the perturbation of the energy gives the following additional

term in the spin Hamiltonian

,= (R111El - R S22 -(R 22 2 E1 + RllE 2 )S(IIE 222 E 2)(S122

(S1 S2 + S2 S1) + (R1 2 3 El + R113 E 2)(1/2) (S2S3 + S3S 2 ) +

+ (aRllE3 R-1 2 3 E2 ) (1/2) (SlS3 + S3 Sd +

+ (3/2) R3 3 3 E3 [S32 - (1/3)S(S + 1)]. (3-6)
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Taking diagonal elements of this perturbation between the wave functions

given by Chang and Siegman yields

= [(RlllE 1-R,,E,) coso - (R2 2 2 E + Rll 1E 2 )

sin 2 ] A (B) + [(Rll 3 E1 - R 12 3 E 2 ) cos g +

+ (Rl 2 3 E1 + R113 E 2 ) sin $] B (S) +

+ (3/2) R.3 3 3 E 3 C (0) , (3-7)

where A ({) = 2 VT (bd+ ac)

B (0) = vq (ab- cd)

2 22 2C (0) = (a- b - c 2 + d). (3-8)

The dependence of these diagonal elements on the orientation of the electric

field is given by the components El, E 2 , E 3 . The Chang and Siegman

wave functions assume the magnetic field to lie in the xz -plane; ý is the

azimuthal angle about the z-axis of the magnetic field out of this plane. The

dependence on the polar angle of the magnetic field from the z-axis is

contained in the coefficients a, b, c, d, and is not given explicitly , From

formulas 13-8 , it is clear that in the case where the applied magnetic field

is along the c-axis, the pure state wave functions have only the R term

in first-order perturbation theory, as was pointed out earlier.

Orienting; the; electric and magnetic fields along certain selected

directions, it was possible to evaluate each component of the R-tensor.

The linearity with electric field for the effect depending on each component

of the R-tensor was verified at these orientations.
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In addition to this work, -he electric field splitting was measured as

a function of the angle of the magnetic field for several directions of the

applied electric field. Figure 3- 5 shows the dependence of the electric field

s.litting on polar angle of the magnetic field for an azimuthal angle • = 00

The electric field was along the x-axis. The curves drawn are the evaluation

of the perturbation on the spin Hamiltonian (Eq. 3-7). Values of the

components of the R-tensor were selected to fit the experimental data. In

the particular case shown, the effect comes from mixing the skew component

R113 and the transverse component R1 11 of the R-tensor . The line splits

into two rather than four components since for these orientations the four

sites are grouped into two sets of equivalent pairs of sites.

Figure 3-6 shows the dependence on polar angle again for an azimuthal

angle ý = 00, but with the electric field along the y-axis. The effect here

comes from a mixing of the transverse component R 2 2 2 and the skew

component R173 and is again a splitting into two rather than four components.

Relative signs as well as magnitudes of the skew and transverse components

were evaluated from such measurements.

Figure 3-7shows the dependence on azimuthal angle of the magnetic

field with a polar angle of 900 . Two transverse orientations of the electric

field were taken. Only the transverse components of the R-tensor R 11 and

R 222 enter, and this allows their relative signs to be determined. In this

case, there is no equivalence of the two kinds of sites which are mirror
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images of each other in the y-plane. The effect is never zero, since the

zeros for the effective splitting for these two sites occur at different angles.

The effective splitting of each kind of site is shown as a dashed line and the

total effective splitting as a solid line. The latter can be shown to be the

square root of the sum of the squares of the individual effective splittings

of the two kinds of sites. The contributions from each site were determined

by selecting values of the components of the R-tensor for each site to best fit

thetotaW effective splitting to the experimental points. The relative signs

of RI1 and R333 were determined in a measurement on a separate sample,
I where the electric field was taken at an angle to the z-axis.

From the position of the minimum splitting at zero degrees we can

say that each site contributes equally and,hence,that the population of the

sites related to each other by reflection symmetry is the same to one part in

seven. From the fact that we never see a shift of the total line, and the fact

that the intensities of the split components are equal, we can say that the

populations of the sites related to each other by inversion are equal to one

part in 200 . We can also say that sites such as d in Fig. 3-4, which have

inversion symmetry, are not populated. This is in contrast to the results

of Geschwind and Remeika [3-8] for gadoliniumin A1 2 0 3., where strong

site preferences were found between the sites related to each other by

reflection. These results could be obtained by magnetic resonance without

an applied electric field because Gd+ 3 has such a high spin that its
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resonance shows a variation with the azimuthal direction of the magnetic field.

Two differences between these cases should be noted, however. First,

gadolinium is a much worse fit than chromium in the A 1203 lattice due to

its larger ionic radius; and second, the chromium doped samples were flame

grown whereas the gadolinium doped samples were grown from a flux. In

addition, it should be noted that Geschwind and Remeika did not observe site

selectivity for iron in A 1203, and iron has an ionic radius more comparable

to chromium.

Table 3-I gives the final best fit for the components of the R-tensor

taking all kinds of data into account. Units are Mc/sec per kv/cm.

Relative signs of the various components are significant. The first two sets

of data refer to the two kinds of sites related to each other by reflection;

the sites related by inversion have all signs reversed.

If the coordinate system is rotated by 5'1 about the c-axis, R 11

can be made zero, which would be the case for C 3 V symmetry. The effect

is somewhat spoiled by the fact that Ri 2 3 which should then also be zero,

is,in fact, small but not equal to zero. Thus we see that the local symmetry

of the chromium site is truly C 3 . More important is the fact that while one

of the two oxygen triangles which make up the local environment of the

magnetic ion is aligned with an edge parallel to the original coordinate system,

the second triangle is rotated by 4. 3°. This shows that the effect arises

predominantly from the second triangle rather than from both equally.



Table 3-1

Values of R-Tensor for Two Types of Sites in Ruby

in Mc/sec per Kv/cm

R -(.0" Z+.003) -(.020 +.003)

R 2 2 2  (.073 +_.003) -(.073+ .003)

R3 3 3  (. 179 + .003) (.179 + .003)

R123 (.04 + .02 ) -(.04 + .02 )

R 13 (.09 +4.02 ) (.09 +4.02)

Sites related to these by inversion have all signs reversed.

In a Coordinate Systemr. Rotated 50+ 10

R ill 0

R 2 2 2  (.076 +-.003)

R 3 3 3  (.179 +-.003)

R1 2 3  +_(.04 +_.02 )

R113 (.09 +.02 )
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This work has shown that the use of the electric field effect in para-

magnetic resonance gives very detailed information about the local symmetry

of the paramagnetic site, particularly for sites of low symmetry. Further,

the electric field effect gives informationr about the odd-parity terms in the

crystal field.



C-pter IV

THEORY OF THE ELECTRIC FIELD EFFECT IN

MgO; Cr AND A1 2 0 3 :Cr

The observed electric field effect in the paramagnetic resonance of

+3 2Cr is essentially a perturbation of the term DS2 in the spin Hamiltonian

describing the optical ground state of the chromium ion. Thus, before it is

possible to make a theory of the electric field effect, it will be necessary to
2

review the theory of the origin of the term DS in the spin Hamiltonian. This,
z

in turn, requires a review of the optical spectrum of the magnetic chromium

ion, since the ground state splitting comes from high order perturbation

theory using off-diagonal matrix elements of the spin-orbit interaction and

the axial part of the crystalline field between the ground state and the optically

excited states.

The Hamiltonian [4-1] of a paramagnetic ion such as chromium is of

the form 2
2

~~Vn Ev Cv +Z I
i= i + Vnuc + Vel cr n n n n

Z- P •(n + 2S) H. (4-1)n nn

The first term is the kinetic energy of the electrons, and the second is the

potential energy of the electrons in the electrostatic field of the nucleus,

given by

V E Ze_2  (4-2)nuc n r n

4-1
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Vel is the electrostatic repulsion between electrons, given by

2
Vei (4-3)

nn7

The largest part of Vel may be represented as a spherically symmetric

potential acting on a single electron and may be grouped with V nuc. The

second part of Vel is inherently a two particle operator and gives rise to the

Russell-Saunders coupling of the I 's into L and the s 's into S. Vn n cr

is the interaction energy of the magnetic ion with its surrounding ligands, and

for the 3d transition group it is comparable to the non-spherical part of

Vel . This results in a partial destruction of the Russel-Saunders coupling,

making L no longer a good quantum number. The last two terms in (4-I1

are the spin-orbit and Zeeman energy, respectively. They are much smaller

than the previous terms and will be treated by perturbation theory on the

eigenfunctions of the Hamiltonian which does not contain them.

Part of the difficulty in the crystal field theory of the 3d group arises

from the fact that V and the non-spherical part of Vel are comparable
cr e

and should be treated together.. Because this program is rather difficult,

it has been common to work in one of two approximations. In the weak

field approximation one considers L to remain a good quantum number and

ignores mixing of the various terms. This corresponds to assuming the

Russell-Saunders coupling to dominate the crystal field. The crystal field

is then introduced as a perturbation on a basis set made up of the ML
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eigenfunctions for the lowest L term. In the strong field approximation,

on the other hand, one applies the crystal field perturbation to a basis set

made up of the elements of the P configuration. Tanabe and Sugano [4-2]

have worked out the intermediate cases for the 3d group starting from a

strong field 1A'ia; Finkelstein and Van Vleck [4-3] have solved the Cr+3

problem starting with the ionic terms as a basis.

In the point-charge crystal field theory it is assumed the Vcr is

given by the electrostatic field produced by point charges located at the

centers of each of the ions surrounding the magnetic ion. It is convenient

to expand the crystal field in terms of spherical harmonics.

oD 1 2 4w IM 0) rAIV cr = X M" M " Ze2 M-7-+ Y I(0nin) Y m•-•TIT(4-4)

n f=-o m=-I r

Unfortunately, the crystalline fields so calculated are usually too small by a

factor of four or so, and this is compensated for by either expanding the

metal ion wave functions [4-4] or by bringing the point charges closer to the

metal ion. [4-S] The most successful form [4-1] of the crystal field theory

is one in which the strength of the crystal field is taken as an adjustable

parameter but where the syn~rmetry of the crystal field is given by the point-

charge field. In other words, the group theoretical part of the point-charge

theory,which is based on symmetry and which has been outstandingly

successful in analyzing optical spectra, is retained. The part of the point-

charge theory which has given trouble is the calculation of magnitudes,
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and this part of the theory is thrown away in favor of an adjustable parameter.

Tanabe and Sugano's work extended this approach to the inclusion of the non-

spherical part of Vel, the electrostatic repulsion between electrons, by the

addition of further adjustable parameters. The work of Finkelstein and Van

Vleck is also in terms of an adjustable parameter.

Kleiner [4-6] has attempted to improve on the magnitudes calculated

in the point-charge model by replacing the ligand point charge by a charge

distributed over the ligand electronic wave functions. The interaction with the

metal ion was calculated by classical electrostatics. Unfortunately, this

calculation gave the wrong sign of the cubic splitting. Tanabe and Sugano [4-7],

however, have shown that a molecular orbital calculation on the complex of

the metal ion and its surrounding ligands yields the correct sign of the cubic

field splitting.

The first application of the molecular orbital approach to magnetism

in solids was made by Van Vleck [4-8] in treating the problem of the cyanide

complexes. More recently the molecular orbital approach has been used

successfully in accounting for the hyperfine interaction in the paramagnetic

resonance of magnetic electrons with a neighboring nucleus. The irridium

halide complexes [4-9] and 3d transition group fluorides [4-10] diluted in

ZnF2 have been studied. The hyperfine interaction of fluorine in several

3d group fluorides has also been studied by fluorine nuclear magnetic

resonance[4-l1] . Shulman and Sugano [4-12] have used the NMR data on the
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hyperfine interaction in KNiF 3 as a starting point and have been able to

calculate from this the cubic field splitting in a molecular orbital fo.rmulation.

It has been assumed that the crystal field is predominantly cubic in

symmetry, i. e., that it is invariant under the symmetry elements of the cube.

The departures from cubic symmetry in the field are reflections of the

departure of the ligand surroundings from a perfect cubic, octahedral, or

tetrahedral arrangement. The non-cubic parts of the crystal field V!cr

are treated by perturbation theory on the wave functions which result from

diagonalizing the Hamiltonian including only the cubic field. Quite commonly

for 3d group ions, the non-cubic part of the crystal field is comparable to the

spin-orbit energy and is treated at the same time as the spin-orbit interaction.

I V g and V u are the even and odd parts of the crystal field for
cr cr

cubic or octahedral coordination, normally only V £ is considered, sincecrV
matrix elements are taken only within a manifold of wave functions which are

purly even or odd in parity. In applying the non-cubic part of the crystal field

together with the spin-orbit interaction by perturbation theory, elements such

as < gj V 1 91 g' > and < u I V'c1I ul > occur. It is through suchcr c

perturbation calculations that the ground state splitting occurs. If now one

wants to consider also an applied electric field, these elements should be

replaced by < gV1c ul u> < uleErlg (W -Wu)lor< uIVI clg>

< gleErul > (Wu- w .1
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The splitting of the ground state of Cr+3 first appeared in low temperature

specific heat measurements on chrome alum. An approximate magnitude for

this splitting as well as the magnitude of the susceptibility was calculated by

Van Vleck[4-13] .; Earlier calculations of the crystal field in chrome alum by

Schlapp and Penney [4-14] and by Siegert [4-15] were made in calculating

magnetic susceptibilities. The optical line spectrum was calculated in greater

detail by Finkelstein and Van Vleck. [4-3],again using a crystal field approach.

Similar but more extended calculations have been made by Sugano and Tanabe

[4-16],Sugano and Peter [4-17],and McClure [4-18] for chromium in the ruby

lattice (A1 2 0 3 :Cr)

The crystal field theory has been quite successful in treating the

+3
optical spectrum of Cr in ruby. The splitting of the optical ground L tate

is then obtained by a perturbation calculation using off-diagonal elements of

the spin-orbit interaction and the low symmetry part of the crystalline field.

Unfortunately, these calculations have yielded a value of the splitting of the

optical ground state which is smaller than that observed. This ground state

splitting is just the D-term in the spin Hamiltonian, the term which is altered

by an applied electric field. Nevertheless, it is possible to construct a theory

of the electric field effect using the crystal field formulation. In the per-

turbation calculation, replace elements such as < gI VI c 1g > by
Se- ar

glVcr [u> < u JeEr~g > (Wg Wu an outlined previously. The results
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of such a calculation, as might be expected, are in on y fair agreement with

experiment. Artman and Murphy [4-19] have called attention to the impor,

tance of the odd terms in the crystalline potential V' u and have noted thatScr

in the original calculations, terms such as < g I VIcrU I u> < ul V.crUlg >

(W - W ) should have been included. They have carried out the perturbation

theory in detail including such terms, and they find fair agreement with

experiment, both for the microwave and optical electric field effects and for

the value of D in the spin Hamiltonian. However, their numerical values

assumed for some of the parameters, particularly the spin-orbit parameter,

seem unreasonable. This theory will be reviewed after a similar but more

primitive calculation is perfomed for MgO:Cr by way of example.

The calculation of Artman and Murphy is contradicted by experiment

on two points. Firstly, on the basis of a point-charge model, it is difficult

to understand why, of the two oxygen trianglos surrounding the metal ion, one

should be so dominant in producing the odd terms in the crystal field, as

evidenced by the angular dependence of the electric field effect. The aluminum

or chromium-oxygen distances differ by only 10 O7o in the two triangles. A

covalent interaction, on the other hand, could be more sensitive to distance,

and this indicates *hat covalency effects should be taken into account more

explicitly in the theory.

Secondly, the axial site for Cr+3 in MgO consists of a sixfold

coordination of nearest neighbor oxygen ions in an octahedral arrangement.
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The axial field arises from a next nearest neighbor magnesium vacancy in a

100 direction, whereas in ruby it originates in the distortion of the nearest

neighbor oxygen octahedron. If it is aosumed that the theory of Artman and

Murphy accounts for the D-term in both cases, an electric field effect an order

of magnitude larger than experiment is predicted for MgO simply by scaling

the ruby theory by D1/2 . On the other hand, there can be only small

covalent bonding to a next nearest neighbor, so again, the assumption that the

electric field effect. arises from covalent effects will explain the negative

results for the electric field experiment in MgO and the positive results in

ruby. Actually, the theory in MgO:Cr is somewhat more complicated than

presented here but still strongly rules against a theory such as that of

Artman and Murphy.

Because of the inadequacy of the point-charge crystal field model in

dealing with the electric field effect in the two cases mentioned above, a

semi-empirical molecular orbital calculation was performed on the complex

CrO0"9 The calculation was performed by L. Lohr[4-20] . The geometrical

arrangement of the complex was taken to be the same as the arrangement of

the ions in ruby from X-ray data. It was hoped that such an approach would

take covalent effects into account, although the model is surely crude. The

rather surprising success of the calculation in accounting for both the D-term

in the spin Hamiltonian and the electric field effects will be described.
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Before entering into these matters, however, it will be necessary to make

a digression on the subject of the dielectric properties of matter.

Digression on the Theory of Dielectrics

Consider a dielectric medium in which the usual relations hold[4-21].

D = E + 4vP = (. 4-5)

The induced dipole moment on each atom is given by

Pi = 'i (Eeff) i (4-6)

where (Jeff)i is the effective field acting on an atom And is produced by the

applied field and the polarization of the surroundings. The average polarization

is given by

E, P. 2iai (eff)i
_ OW (4-7)

11 ii
where v. is an atomic volume.

Now for the moment consider a solid containing only one atomic

species. The applied field E is equal to the local field averaged over the

volume of one atom. In calculating E note that the difference between
W.eff'

Eeff and E is the field produced by the polarization of the atom in

question averaged over the atomic volume. This field is

dr S (r) dr
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• v dr p (r) Avdr-- (Ir

AVAV Ok, A&%

= p d (r)( 4rr
3-V A V W

-(4-8)

Hence the relation

E e + 0-P (4-9)

Eeff a&I

holds. In evaluating the first integral evaluated, it has been assumed that the

volume AV is spherical. This effective field is,also, the field calculated inside

a hollow sphere in a uniform dielectric, and this is an equivalent way of looking

at the problem. Equation 4-9 may be termed the Lorentz effective field and

leads immediately to the Clausius-Mossotti equation

-3 (c - 1)

A susceptibility may be defined by the relation

S4T l *% _ w 0 ,(4-11)

Sin which case there results im m ediately by definition

x = (C/v) (4-12)

When the polarizability arises from only one source, and when the lattice

symmetry is cubic, the treatment above is adequate, but when the polarization

arises from several mechanisms, the problem becomes much more complicated.

In generai, the effective field will be different for each polarization mechanism.
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As one limiting case, consider two polarization mechanisms which

have similar (assumed identical) spatial distributions but which are associated

with different electrons. Assume these different mechanisms depend on the

same averages of the local field. One such case would be the polarization

of different electronic shells of an atom. If P 1 and P 2 are the polar-

izations resulting from each mechanism,

P=P1 +P~ =~ 1 (E )f~ + G C efL (4-13)

The atomic volume v has been suppressed in the definition of a for the

moment. (Eeff)I is the effective field producing polarization -P' and is

equal to the effective field on the atom given by Eq. 4-9 plus the field

produced by P 2 in the region of the polarization. Hence, the relation

(E = E + 41

E + (4-14)

En~uation 4-14 could also be obtained by noting that the difference between

(,Eeff)1 and X is just (4w /3) PI (Eq. 4-8). This is a reflection of the

fact that the need for an effective field arises because one wishes to write the

polarization as a function of the field existing before the polarization takes

place rather than as a function of the field existing after the polarization.

Adler [4-22] has worked out a quantum mechanical theory of the dielectric

constant in which the polarization is written as a function of the field existing after
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polarization, and he obtains rather complicated correction terms in this

formulation.

Note from FEq. 4-14, that if the polarization due to a particular

mechanism, such as the polarization of one electronic shell of an atom, is

small, the effective field to be used in calculating this polarizatio' is just

the macroscopic applied field. This assumption has been made by Sternheimer

[4-23] in calculating electronic polarizabilities of free ions and atoms. Most

of the contribution comes from the outermost electrons, but even so, the

polarization of one individual electronic orbit is small, and the effective

field may be taken equal to the applied field. Havinga [4-24] ho- used a

similar approximation.

Brodksy and Burstein [4-25] have found that in calculating the

dielectric constants in III - V compounds with non-localized valence band

wave functionsP the appropriate effective field is the macroscopic field. In

calculating the electric field effect in nuclear magnetic resonance, Gill and

Bloembergen [4-26],also, found it necessary in GaAs to assume the effective

field equal to the macroscopic field. These findings are reasonable in light

of the previous paragraph when it is noted that the contribution of each

itinerating electron to the total polarization is small. A similar assumption

has been used in interpreting Dixon's [4-27] data on electric field effects in

the pure quadrupole resonance of Cl 3 5 in several organic solids, where the

electrons in question itinerate over a large molecule.
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Now from Eqs. ý4-11, 12, 13, 14

X = C4L
U

1 CL

S 3 + 2
% cL2+ 4•r(4-15)1- - ----•-• -w.---c

It is easy to show that

(a1 +a 2 ) 2(41/3)(a1 %)CL I=4 3 (4-16)1 - (4w/3)2 ca a2

Note that while a / aI + a 2 , X = XI + X2 ' This is because the effective

field for one polarization is independent of the second polarization as long

as the problem is written in terms of internal fields.

Now consider as a second limiting case, two polarization mechanisms

which are separated in space. One example would be the electronc polarization

of the two ions in an alkali halide crystal. Define fields and polarizations

averaged over the areas occupied by the cations (El , P1 ) and the anions

(E 2 , P 2 ). Then there are relations for the macroscopic field.

(vl + v)E • v 1E + v2 E

(v +V 2 )P v= vP +vz 2 (4-17)
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Also,

(E.) E + 41
effl -- 4.1 ÷ T .1

( = + --- (4-18)

and

Vll = 1 .Eeff)I

v2 .eff)2 (4-19)

The problem is to find a relation between E and E in view of the

fact that only the total dielectric constant can be measured. One possible

approximation is to assume

(Eeff)1 = Eseff)2 = + LP, (4-20)

with L = 4W/3, in which case the simple relation results,

S(Vl( l + a 2 ) + 0 (4-21)""0'v(V + v_ 2) , P']

or a a I + .2 (4-22)

An alternative approach is to calculate the effective field from its

sources. Following Lorentz, take a large spherical cavity centered on one

atom. The effective field Produced by the applied voltage plus the polarization

4outside the sphere is then E+ -+ X. It is necessary to take the sphere

large so that the surrounding dielectric may be treated as being continuous

and uniform. The contribution from the atoms inside the cavity is
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evaluated by replacing each atom by a point dipole. The resultant field in then

evaluated at the nucleis, of the atom being polarized.

This procedure may be criticized on two grounds. Firstly, one is

interested in the value of the field at all points where there are polarizable

electrons of the atom, not-just atithenucleus0 Since such dipole sums are rather

violent functions of the position where the field is being evaluated, the poor-

I ness of this approximation becomes apparent. To get a reasonable result,

cane would have to evaluate the field given by the dipole sum at many places,

then average, this result over the space occupied by the electronic orbits.

Experimental evidence that this is so comes from Dixon's [4-27] results on the

electric field effect on the Cl 3 5 pure quadrupole resonance in a series of

substituted methanes and benzenes. He finds about the same electric field

effect in all compounds in spite of the fact that the effective field at the

chlorine nucleus calculated by dipole sums is very different for the different

materials. This is because the effects of the nearest dipoles should be

very different in different molecular structures. One explanation of this

result is to note that the chlorine electrons experience not only the effective

field at the nucleus, but also the effective field all over their orbit. (It

is the electrons which actually sense the applied field, not the nuclei.)

Presumably, in this averaging, the variations in effective field are washed

out. In dealing with ionic crystals, the electrons are more localized than
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in the covalently bonded materials of Dixon's experiments, but a similar washing

out of sharp variations in the dipole sums should still occur. Of course, in

ionic crystals the localization is sufficient that the effective field is not the same

as the macroscopic field.

Secondly, the major contribution to this dipole sum will be from the close

dipoles, and for these dipoles the approximation of a point dipole is rather bad.

One should probably include quadrupole and possibly higher fields from these

atoms. Belford, Bernheim, and Gutowsky [4-28] have attempted to calculate by

the method of lattice sums the asymmetry parameter n} in nuclear pure

quadrupole resonance for crystals far from cubic in symmetry. They find very

poor agreement with experiment, and this tends to confirm the objections raised

to the dipole sum method.

Note, however, that for a cubic lattice, such as the alkali halides, the

dipole sum is zero when evaluated at the nucleus. In this case Eq. 4-21

immediately results, and the question of reliability of the dipole sum procedure

does not arise. For simplicity, in this work Eq. 4-21 will be assumed valid

for non-cubic lattices, also. Tessman, Kahn, and Shockley (TKB) [4-29] have

used Eq. 4-21 (based on approximation 4-20) to evaluate the electronic

polarizabilities ci for the individual alkali metal and halogen ions from the

index of refraction of the varios alkali halides. Roberts [4-30] has treated

the static polarization in a similar manner. The success of these evaluations

shows that, indeed, one has a linear addition of the separate polarizabilities,

as given by Eq. 4-21 or 4-22 . TKS have also varied L in Eq. 4-20,

getting a new set of ai's each time. They found that the ai's were most

consistent for L = 4 /3 , as one might expect.
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Two limiting cases have been discussed here. In the first case

(Eqs. 4-13 to 4-16 ) two polarizatlun mechanisms associated with different

electrons were assumed to be superimposed in space. In this case the local

field contains a Lorentz correction only for the polarization being considered;

the rest of the polarization is considered uniform throughout the medium. In

the second case (Eqs. 4-17 to 4-22 ), one considers the two components of the

polarization to be separated in space, so that the effective field producing either

polarization is the same. Throughout this discussion, the assumption has

been made that the polarization may be written as a function of the effective

field averaged over some region, thus enabling one to avoid consideration of

rapidly varying local fields. For a more exact treatment, see the work of

Adler.

In calculating the electronic part of the electric field effect in magnetic

resonance, the perturbation of the chromium wave functions will be calculated

under the influence of the applied electric field. To verify that the perturbation

is being calculated correctly, the calculation is extended to calculating the

index of refraction. Denoting the electronic polarizability by Lel and noting

that the polarization on the two atoms is distinctly separated in space,

el Iel + C2el (4-23)

Itt
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Since from 4-12, one has

n 1=4 Xtotel atotel (1+v2 xn-1=41 v e =[ tt/(vi + v2 )] x

xj - f C- tot'(vi + vJ -1) (4- 24)

one, hence, obtains

(a 1el + L2el3 n - 1
( + v2 (42S(1l ÷ 2) 41(n + 2)

(see Eq. 4-10) . Electronic polarizabilities are given by TKS for aluminum

magnesium and oxygen, but unfortunately not for chromium. Assume that

electronic polarizabilities of all ions (Al, Mg, 0, Cr) are proportional to the

atomic volume. This approximation should be good within a factor of two. This

yields the simple relation

S -el N1n + ) vi (4-26)i 4W (nZ + 2)

P is the same on all ions, the dipole moment per ion being given by

el Pe vi [(n -_1)14 ] v. Z. (4-27)

Turning to the static dielectric constant, consider the combined

effects of the electronic polarization of the individual ions together with the

ionic polarization corresponding to a movement of the positive and negative

sublattices with respect to each other. Because the polarization motion

involves, in part, the motion of the same electrons for both components
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of the polarization, and because it is not correct to consider the two polarizations

to be superimposed in space, neither of the cases previously described is

appropriate for the effective field problem for the electronic and ionic effects.

For simplicity, the effective field will be ass amed identical for the ionic and

electronic effects, namely that given for this problem by Szigeti [4-21]

E + =4 P (4-28)v0eff M .

In this approximation, one has

Vi'r

From Eq. 4-12

C -L • 1)/4 3 ( -1
(e+2 (4-30)

Also

3 (n 1 (4-31)
el W (n + 2)

at optical frequencies. At low frequencies, one has

Xke 1  ee --~r P)

n ÷I1 (E+-- .P). (4-32)

S(n +2)

Therefore, using 4-29 , 30 , 32

P. =P-PS - •- -i'1

(n +2) 0
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Using 4-29 yields

3 (C - n~~. E. (4-34)
Xion 41 • •2)

(n + 2) ''

Finally,there is the- relation

P. e * 1x (4-35)&..ion 0

where N. is the number of charges per unit volume, and where e is an0

effective charge. The effective charge will be taken equal to 0. 8 times the

ionic charge [4-24, 4-31] . Table 4-I listwperprinent quantities [4-32] for

the materials of interest in this work.

Table 4-I, Dielectric parameters

e * (cation) 3ef 2e" 4ef

N (cation) 4.7 x 102 2 /cc 5. 6 x 102 2 /cc 3. 2 x 102 2 /cc

8 8.6- 10. 55f+ 9.65 89- 1731"1

n 1.77 1.74 2.6 - 2.9

n - 1 2.1 2.0 5.8- 8.4

c-n2 5.5- 7.45 6.65 82 - 164

(8 X)ion for 105 v/cm (Eqs. 4-34, 4-35) .

(1.78 - 2.18) 2.43x 10 1 2 cm (1.5 - 2.3)

x 10"12 cm x 10"1. cm

+ also, times 0.8 , see above

f perpendicular and parallel to the c-axis.
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Primitive Crystal Field Theory for MgO: Cr

Cr substituting for magnesium in MgO enters an octahedral site

surrounded by a sixfold coordination of oxygen ions. Some of the sites have

a magnesium vacancy at the nearest site in an (001) direction for charge

compensation, and it is the magnetic spectrum of this Cr+3 site which is of

interest. Assume that the cubic part of the crystalline field is the same for

both the compensated and non-compensated sites. Cr+3 (3d 3 ) has a 4F

term lowest in the free ion spectrum. The cubic field

0 'T- 4 4
Vbi = Cc [Y 4  +T"r (Y4 4 + Y")] (4-36)

splits the sevenfold orbitally degenerate 4 F term into two orbital trijlets

4T1 and 4T and an orbital singlet 4A.2 1 The resulting wave functions are

T r 3-3 + V/" Y3
1 1 ET 1F-Y3 + }-

41 -3"

3ET 2- VS/ Y3 -" Y23

A- 7 32 + Y3"2 - B

V2 3 - -Y3-2- B 1 . (4-37)
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The energies for 42, 4 T., and 4 T levels are -l2Dq, -2Dq, and 6Dq,

respectively, where 1ODq = 751T Cc . Actually a 4T, (4 P) multiplet

mixes with the 4 TI (4 F) multiplet, producing two 4 TI multiplets whose

energies do not follow the results of the calculation above. We will be

interested only in the 4T 2 orbital multiplet, however, and this is well

accounted for in our weak field scheme.

No•te the !additiokial tetragonal crystal field is

b 0 ++400
V, =-C6 YC 0 6 C6 Y6 - + C4 Y4 + C2 Yz (4-38)

an orthorhombic field would also include Y 2 -2 I Y +-2, and Y6t2 terms.

Any Y4 ÷-4 terms are lumped with the cubic field by adding and subtracting

0 4 4a suitable amount of Y40. The tetragonal field splits T 2 into a E

4 4 44
and B 2 and the 4T 1 into a E and 4 A2. An orthorhombic field would

split the 4 E orbital doublets.

The spin-orbit energy )L. S connects the 4 A2 , 4 B1 ground state

4
only to the T 2 levels. The required matrix elements of L are

4 4 ' 4 4<4A2 , B1 I Lz T2 , B2 > 2

4 4 T<A 2 , B1 I 4T, 2 4 El)>= 2

< , 4 B 1  Ly 4T 2 , 4 .E(2)> = +2i. (4-39)

A2 ,IL T2(
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In second-order perturbation theory, consider

< A I<4 A1XL'S14 T2 > < 4 TXL'S 4 A 2 >A ww4z .W4Tz (4-40).
W( A2 ) -W( T 2 )

This expression gives the energy perturbation of the 4 A20 4B level.

Expansion yields

AW = -4k 2 1 4B21 +( + 4-41)4w4 W 24 4E)) (42 4E121
W( T1 B ) T21 El))W( T21

Swhere W( 4 A 2 , 4BI) was taken as zero. Rearranging (4-41) into the usual

spin Hamiltonian form yields

3e' = D[S 2 -_ 1S(S+ 1)] + E (Sx 2 - S 2) 4-42)

where
wher - 2X 2 2 IW1 4T2, 4E21)) + W( 4T2, 4E(2))- 2W(2T2, 4 B

[W(1) 44 412 2 )41[w14 T2 1]

2X 2 rW( 4 T2 , 4EM) - W( 4 T2 , 4E(2))] (4-43)

[W( 4T 2 )]

If W( 4 T 2 ) - W14A2).=! IDq, and W( 4 T 2, 4 E) W(14 T 2, 4 B 2) =-3K,, then

S(3K 1 ) 14-44
(IODq)I
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Similarly, the departure of g from 2.0023 may be obtained by the

perturbation

= <4A 2 1,XL'S1 4T2 >< 4TZ I AL'HI 4Az >Sw=w4Aa W4Tz (4-45)
W(4A 2) W(4 T 2 )

whence

= •(4-46)

From the optical spectrum lODq o 15, 000 cm". The value X=70cm"i

will be justified when the spectrum of ruby is discussed. This conveniently

leaves 3K 1 as a parameter to be adjusted to yield the observed value of D.

It should be emphasized that so far nothing has been calculated, since there

have been as many adjustable parameters as there are observed quantities.

The application of an electric field will change 1ODq andhence,

Ag only in second order, which may be presumed unobservable. Similarly

by symmetry, a field applied transverse to the chrome-vacancy axis can

cause only a second-order effect. Only an applied field along the axis

should produce a first-order effect by changing the chrome-vacancy inter-

action. From Eqs. :4-38, and 4-4., note that 3K1 is proportional to

(1/r n), where n is 3, 5 or 7 depending on which term in (4-38) dominates,

and where r0 is the spacing between the vacancy and the magnetic ion.

Hence, if 8 represents the perturbation on the application of an electric

field, one has
CD Oro

n (4-47)
r
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In calculating 8 rt note fii• that if the'-chranium ion had the same charge as

the magnesium it replaces, both the chromium and the neighboring vacancy

in the magnesium sublattice would move with the magnesium sublattice,

and Or would be zero. Because of the excess charge on the chromium,
0

however, it moves 3/2 times farther than the magnesium sublattice

(assuming the oxygen sublattice fixed). Hence, Or is one half the motion

of the rpagnesium sublattice due to ionic polarization. From the constants

in Table 4-I, E•-. 4-47 with n = 5 yields OD/D = 2 x 104 for a field of

105 v/cm, or OD = 0. 5 Mc/sec, which is conveniently smaller than the

experimental upper bound of 1 Mc/sec set for this quantity.

The assumption has been made that the ionic electric field effect

will dominate the electronic electric field effect associated with the

electronic polarization of the chromium ion. This would appear to be a

fairly good assumption, since the static dielectric constant is much larger

than the optical constant. To calculate the electronic effect, replace matrix

elements of (V'cr) ax by < gI(VcrU )axlU> < ule-Ezlg > (Wg 9- WU) as

previously outlined. This introduces a new parameter, the strength of

(V crU)ax , which would require experimental determination.
c From Eq. 4-44, 3K 960 cm-ax since D 2.5 Gcilec or

-1

0.083 cm . But

K=<gl(V'cg) I g > (.4-4)
cr ax g>(-8
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If all of D or K is attributed to (Vcr U)ax then

<g( )V' U) Iu><u(V' U) Ig>
K = cr ax W cr ax (4-49)W -W

g u
If = d nd = pandW - W U= -40,000 cm- I then < g (VI crU) axlu>=If g=3d andu=4p, andWg uw .4,OOm

5000 cm' . This is an upper bound on the quantity in order that D shall

not be too large. But if all of D or K is attributed to (V' rU ax then

6 D < gleZ- lu > (-0
< l(V' crU) a.c uxt

and'if < gleEeffzIu>= ,cm' for E = 1 v/cm, 8D/D = 10 x In

other words, at most the electronic contribution to D may be five times

greater than the ionic contribution. The effective field used in calculating

the electronic effect was taken as E.f =[(c + 2)/3]E

After discussing the much better understood case of ruby it will

be possible to return to the problem of MgO:Cr.

Crystal Field Theory of A 2 03 : Cr

f The structure of the Cr+3 site in Al 2 0 3 (ruby) has been discussed

in detail in Chapter III, and the reader is referred to that chapter andin

particularto Fig. 3-4 for details. Briefly, the chromium site is between

$ two non-equivalent oxygen triangles and has C3 symmetry.

The preceding theory for MgO:Cr was worked out in the weak field

limit. It will now be convenient to work in the strong field limit, allowing
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the addition of configuration mixing at the cost of considerable increase in

the complexity of the theory. The increased complexity arises because there

are much more experimental data to be accounted for on Al 2 0 3 :Cr than on

MgO:Cr. The splitting of the 3d single electron wave functions under the

action of the cubic and trigonal field is shown in Fig. 4-1

f (1) e(l)

1ODq

t 2 , 3K e( 0 )

Figure 4-1, One-electron crystal field splitting in ruby for cubic

j and trigonal fields.

Sugano and Tanabe [4-16] and Sugano and Peter [4-17] have worked out the

three-electron problem in the strong field limit including the electron-

electron repulsions assuming a cubic crystal field. The resultant energy

level diagram is given in Fig. 4-2., where only the important, luw-lying

levels are shown. Strong field notation is used, though it is easy to identify

the spin quartets occurring in the weak field theory of MgO:Cr presented

earlier.
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2 E(t 2
2 e), 2 E(t 2 

2 e)

4 T(t 2 e 2 ) T 2 T(t 2
2 e), 2 T 2(t2

2 e)

2 T2(t 2 2e), 2 T 2 (t 2
2 e)

4 T I ( 2 2e)2(2 2t (t22e

4 T (t22 e) 2AT(t e

22213

2Tz(t 2)

4 A2 2 3

4T2 (t2 22) * 2T 1 (t 2 )

2 E.(t 2
3 )

4A2 (t 2 3)

Figure 4-2, Energy levels for d3 in a cubic field.

(* Positions uncertain)

These calculations of Sugano, et. al., have been outstandingly

successful in accounting for the optical spectrum of Al 2 0 3 :Cr. The non-

cubic part of the crystal field together with the spin-orbit interaction



-A then treated by perturbation theory using the cubic field wave functions

as a basis set. Define a trigonal field parameter K by the relations
2K =-< a. I Vtrigg91 a >

2K = <aIV 9jg ea>
K = < e(0 ) ' trigi e(0 )> (4-51)

The trigonal splitting of t 2 is then 3K, and the trigonal splitting of

4T 2 (t 2 2e) is (3/2)K . K is determined experimentally from optical data,

whereas for MgO:Cr, K was retained as an adjustable parameter to fit D.

4 4Note alsotddtW( T2 ) - W( A 2 ) vt lODq. Now introduce the spin-orbit energy

V :L.S= - (4-52)
i=l

3.using Eqs. 4-39 to evaluate the matrix elements of L. For 3d 9 R

In analogy with Eqs. 4-40 to 4-441, write the perturbation of 4 A 2

2

(--6 D2) as

4lz <4A2lv 5ol4T2,<4T 2 lvtri-gl4T2 ><4T21lVool A2 > 1-

[W(4A2) - W(4 T2 )

This term, however, is almost cancelled by the term

WI4A1 =< 4 A21Vtrigg1 4 T, >< 4 TI IVS°14 T2>< 4 T2 , 2Vs°0 4A2 A (4-S4)
[W( 4 A 2 1 - W( 4 T 1 ] [W( 4 A2 1 - W( 4 T2 1 ]
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as was pointed out by Sugano and Tanabe. Even without this cancellation,

however, the calculated value of D is an order of magnitude smaller than
-l -1

experiment and of the wrong sign, if one uses K = -350 cm , X = 70 cm 1

1ODq = 18, 000 cm-1 from optical data. This led Sugano and Tanabe to

suggest]correct4" that D originated in an anisotropic spin-orbit interaction.

This is another story, to be presented later.

Artman and Murphy [4-19] have noted that the usual calculations

are done within the 3d 3 configuration, in which case one uses only VI cgP
the even part of the crystalline field. However, V' g

cr may be replaced by

(V' cru)Z in the perturbation calculation involving the non-cubic field. This

gives an additional term

421 V80 14c< 4A2V 14 T2> <4 T IV- 1Uu><uIVr 4 T2 >< 4 T V 4 AT >.

3 (4-55)

Note that this is exactly what was done in the MgO:Cr calculation. However,

if such a term as (4-55) is larger than (4-53), there would be an additional

splitting of 4 T 2 given by

[4 T <4T 21 V'crul u>< ul V1crU1 4Tz >W(4T 2 ) = W4T2 -,lu (4-56)

2 ~W(4 T 2 ) - W (u)

and this is not observed. Artrnan and Murphy have also included energy

perturbations such as

<A 2  crUlu><ulV solu ><u Vsolu><uVcrIA 2 >
(4 2 rs 1su1>uVcrA) '(4- 57)W-A-& 1& 2 A3
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and by taking V!so, the Ppin-orbit energy in the exited odd state, to be some

ten times that in the 3d states, they get satisfactory agreement with the

experimental D Replacing < giVIcr ' u> by <gleEzlu>, and by

multiplying the matrix element by - 4, they are also able to calculate the

R 3 3 3 component of the electric field effect in agreement with experiment,

as well as the optical electric field effect observed by Kaiser, Sugano, and

WoodI4-33]. Their justification for multiplying by four is that all electro-

static matrix elements are multiplied by such a factor in the point-charge

crystal field theory in order to get agreement with the observed optical

spectrum. However, a study of Moore's Atomic Energy Levels [4-34]

reveals from multiplet splittings that X(u) is only two or at the most three

times X(3d), making the results of the calculations of D by the mechanism

of Artman and Murphy an order of magnitude too small as compared with

experiment.

It was concluded from these considerations that if one allows

sufficient number of adjustable parameters in the crystal field theory, all

data can be accounted for. The parameters which Artman has added to

the usual ruby crystal field theory are V' u and the excited state spin-
cr

orbit paramet- - X(u) Actually, V' u was estimated from a point-

charge model and gave the value required to fit the experiments when

scaled by the usual factor of four. If, however, these parameters are

determined from outside evidence, particularly M(u), the crystal field
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theory fails to yield the experimentally observed magnitudes. The way out

of this dilemma was suggested by Sugano and Tanabe, who pointed out that

one could add an additional adjustable parameter by considering the spin-

orbit interaction to be anisotropic. The spin-orbit anisotropy parameter has

the virtue that it cannot be determined from optical data, allowing it to be

fitted to the microwave spin Hamiltonian. The spin-orbit perturbation of

4 A is then2

AW = DS 2

z
44 4 1

<4A2.I.LiSi1 4T2 ><4 T2 J kiL.Si 4A >

i W(4A 2 ) " WA T2 )
2 2

4 fX 2S2 +X~i 2 2
L S2+ ST). (-8

"W(4 A 2 I - W( 4 T 2 ) ( + j'x

The summation runs over i = x, y, z. This yields

S4(X 2 -J . 2 ) (459)D = W(4A2). 4T2_ (4-59)
A A2 ) W( T 2 )

If the anisotropy ( - ) is dependent on an applied electric field,

the D-term and the electric field effects have been successfully accounted

for. In the following section, covalent effects are shown to account for the

observed effects by just this mechanism, and the wnisotropy is explicitly

calculated.
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Semrei-Empirical Molecular Orbital Theory of Al 2 0 3 :Cr

In the molecular orbital (MO) procedure the complex Cr06-

was considered, and the MO wave functions for the complex were written

as a linear combination of the atomic wave functions centered on the various

atoms of the complex. Coordinates of the atoms in the complex were taken

as those in the Al 203 crystal structure. The mixing of the atomic wave

functions on different centers in the LCAO-MO procedure arises from the

exchange energy

Vexchange S '/1.111 l2i121 r ik 1 12) •/211 d(" . (4-60)

This term should be added to the single atom Hamiltonian, and the total

Hamiltonian then diagonalized.

The semi-empirical method used here [4-20] is one in which an

approximation to the Hamiltonian of the problem is made, after which the

Hamiltoniai, is diagonalized numericall-,. The whole procedure is done

in a machine calculation once certain starting parameters are specified.

The off-diagonal elements of the effective Hamiltonian between the AO

basis functions were specified by the relation:

I
= Sip i /, (4-61)

where is the atomic orbital overlap matrix. The diagonal elements

3eii were estimated from the ionization potentials of the free ion [4-34]
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after reduction due to screening effects in the solid. The atomic wave function

basis set was taken to be of the Slater form

1 1Y (0, 4) R(r)

R(r) =Nrn e-Kr (4-62)

The constant K was chosen so that the wave function would approximate

as closely as possible the analytic SCF wave function on its outer extremities.

This means that the wave functionc are fairly good for calculating properties

which depend on the outer part of the electron distribution, such as ligand

overlap, but very bad for calculating properties which depend on the wave

function close to the nucleus, such as the spin-orbit parameter X . For this

reason, it was impossible to calculate )X, and k was taken as an adjustable

parameter. The strengthtof the "crystal field" was fitted to the optical spectrum

by slightly adjusting K to give the proper "cubic splitting, " but no other

crystal field parameter was adjusted. In the usual crystal field theory, one

has in addition to the cubic field parameter 10 Dq, also a trigonal parameter

K and perhaps parameters for the odd components of the field. Of course,

these parameters may be related to each other by a point-charge model

including the specific geometry of the site, in which case there is only one

field strength parameter, namely the constant by which all calculated crystal

field quantities are to be multiplied. In the molecular orbital formulation

the non-cubic parts of the crystalline field are taken into account auto-

matically by the geometry of the problem.
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The atomic orbital (AO) basis set used included 2s and 2p orbitals

on each of the oxygen ions and 3d, 4s and 4p orbitals on the chromium. The

one-electron MO's which result from the procedure when applied to ruby

include at the lowest energies MO's which are made up primarily of ligand

AO's. These MO's make contributions to the spectroscopic problem only

in the charge transfer spectra since they are occupied by two electrons. At

higher energies there are five MO's of primarily 3d composition, which are

to contain the remaining three electrons. These MO's are split as shown

in Fig. 4-1. Placing the three electrons in various of the one-electron

MO's yields a series of three-electron primitive wave functions (e. g.

2 2
ae(0 ) , ae(0 )e( 1 ), e( 0 ) e( 1 )), and suitable linear combinations of these wave

functions have the transformation properties of the states given in Fig. 4-2.

Unfortunately, the non-spher'dial part of the electron-electron repulsion

enerly

Vo ti = -k 1 *(1) *2*(2) 41'1( 4/2 (2) dT (4-63)

I has not been completely included in this problem, which means that the

I resulting energy levels are still quite different from those in Fig. 4-2.

Only the cubic field splitting 1ODq = W( 4T 2 ) - W(4 A) = W(e( 1 )) - W(t 2 ) and

the trigonal splitting 3K = W(e( 0 )) - W(a) have been accounted for so far.

Correlation effects were taken into account approximately as follows. Note

that the predominantly 3d MO's are not very different from the pure 3d AO's?
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where the problem has been treated by Sugano, et. al., in terms of several

adjustable parameters. It was assumed that the solution of the correlation

problem in the MOIs would be essentially the same as in the pure 3d case,

in which case the energy levels of Fig. 4-2 result for suitable values of the

parameters, in agreement with experiment.

Stevens [4-35] first pointed out that in a molecular orbital

formulation, the spin-orbit energy XL" S would be reduced because

matrix elements of L would be non-zero from the 3d part of the MO but

would be zero from the ligand part. This served to define an orbital angular

momentum reduction parameter k, which would be one for a pure 3d

orbital. Koide and Price [4-36] introduced the additional covalency param-

etek. q to take into account the fact that the e orbitals are more covalent

than the t2 orbitals. The orbital angular momentum reduction factor for

t 2 orbitals is k, while for e orbitals, it is k(l-c)1/2 . This formulation

has been used successfully in analyzing spectra by Stout [4-37 , Pappalardo

[4-38], and Sugano and Peter [4-17]. However, Zahner and Drickamer[4-39]

had only poor success in fitting pressure data on a nickel spectrum.

A more serious objection to the orbital reduction picture has been

raised by Marshall and Stuart [4-40], who point out that when the non-

orthogonality of the AO basis set is properly taken into account, the orbitalI angular momentum is no longer reduced. This is in agreement with the

results of the calculations performed here. The spin-orbit energy reduction
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observed in fitting optical spectra, as in ruby, probably comes from the

slight expansion of the chromium wave function in the solid due to shielding

from the lgand electrons. The spin-orbit parameter in the solid is obtained

from the optical spectrum by the relation (Ref. 16, Eq. 5. 6)

8(-E) = 4KCAW( ý) - W( 2 T)] , (4-64)

where 8(2 E) is the 2E level splitting of the R-lines and (3/2)K is the

trigonal splitting of the 4T2 levels. Experimentally, K = -350 cm 1,

II
whereas the MO program yields K = -250 cm . Using experimental

(spectroscopic) values of K, 8( 2 E), and W(2E) - w(ZT ) yields X = C/3.-=

50 cmI [4-16]as compared with 90 cm"I in the free ion. However,

configuration mixing alters the formula for 8 ( E), resulting in an estimate

of X = 70 cm. [4-17], the value used in this work. A slightly smaller

value of X would have yielded better agreement with experiment for the

ground state splitting ZD and for the electric field effect but did not seem

justified.

Matrix elements of the spin-orbit interaction connect the 4A2(t23)

ground state to the levels of 4 Tz(t 2 
2 e), 2 T 2 (t 2

3 ) and 2 T 2 (t 2
2 *) [4-41] .

Using the methods of irreducible tensorial operators, one obtains the

splitting of the 4A2 ground state as

2D(8X2)L LW(4A) =8W( 4• 22

(over)
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W(A) - T2, tz) 2 )Z[.L ~

IW ! 1!'(4-65)

[W(4A) W( 2 T 2 , t2 3J

S, k. , and V'1  are defined in terms of the one-electron MO's

by the relations

()]

= E [<eClltz2 > 2  < e L GIxftz > ] 1 (4-66)
a, 

xS

p2

- z[<tz 2t27> - <tzpllxltz'v> 2] (4-67)

P> fI,

In evaluating the matrix elements on the right in Eqs. 4-66' and :4-67,

only matrix elements between the 3d components of the MO's were used.

Small coefficients (entering squared) make the 4p contributions negligible

(<1 )• The i'gandAO's have no spin-orbit interaction about the

chromium center. Surprisingly,the dominant contribution to 2D comes

2 3
from the levels of T 2 (t2 3), whereas previous calculations have

emphasized the levels of 4 T 2 (t 2
2 e)[4-16] or of 2 T 2 (t 2

2 e) [4-17]. The
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energy denominators used were the experimental values W( 4A) -

W( 4 T2 , t22e) = 18,000 cm- 1  W(4 A) - W( 2 T 2 , t 2
3 ) = 21,000 cm-

and W(4 A) - W( 2 T2, t2e) St - 50,000 cm" 1 . The splittings of these2'
£ levels were ignored in the energy denominators.

The anibotropy of X , which produced :D in this formulation,

is a manifestation of the fact that the a MO (x0 of ref. 16 ) has a difforent

degree of covalency from the e(o) MO's (x+ of ref. 16). Undoubtedly,'tis

could be described in terms of an additional covalency parameter, though

such has not been done here. It should be mentioned that Lacroix [4-42]

and Kamnimura [4-43] have also suggested that covalency would produce

the observed value of 2D in this manner.

Table 4-I1 gives the results of these calculations for several

cases. On some of the runs the site symmetry was distorted to C3 , from

the true C3 symmetry by rotating the larger oxygen triangle, with no

significant effect on the spectrum. The omission of the 4s and 4 p

chromium AO's produced only a moderato increase in the trigonal

optical and microwave splittings, an indication that these orbitals are not

particularly important. Because of the form of the interaction(Eq. '4-61),

however, the matrix element of the approximate Hamiltonian between 4p

and 3d is zero, whereas this is clearly not the case in the true Hamiltonian
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Table 4-f1, Crystal field splittings in the molecular orbital

formulation (in cm )

1ODq -3K -D 8D** 81)***

C3 (4s 4p) 21. 1* 420 0.37 77+ l0+

+0. IX 18.5 580 0.78

-0.1 x23-5 260 0.09

C 3V 21.2 450 0.39

C3 (no 4s 4p) 21. 5 850 0.47 70 20

C2 1.6 900 0.48

C3 (4s 4p) +4A1 20.2 400 0.36 80 10

Experiment 18.0 "1050 0.18 90++

* x 103 all entries for 1ODq

** ionic effect for 105 v/cm

*** electronic effect for 105 v/cm

+ x 10.5 all entries f r 8D

++ electronic and ionic effects combinedI

simply from electrostatic considerations. It is estimated thr-t the admixture

of 4p is too small by a factor of two or so, and this should not seriously

I• affect the result.
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Displacement of the chromium atom along the c-axis has a strong

effect on the microwave trigonal splitting but only a weaker effect on the

optical splitting. Since Cr+3 is somewhat larger than the Al+ 3 it

replaces, such a displacement probably exists and is most likely in the

positive direction, which is towards the large, open triangle. Because

of the uncertainty in the position of the chromium, not too much significance

should be attached to exact agreement or disagreement of the calculated

D-value with experiment. It can be said, however, that the molecular

orbital formulation gives satisfactory agreement with experiment as regards

the signs and magnitudes of the optical and microwave spectral splittings.

Sugano and Peter [4-17] have pointed out that configuration mixing

will increase the value of D even in the usual electrostatic crystal field

picture. Presumablythis occurs here as well, though not necessarily to

the largest extent calculated by Sugano and Peter. Because of the argu-

ments about displacements presented above, agreement or disagreement with

the observed value of D is probably not too significant.

Turning to the electric field effects, both the effects of ionic and

L electronic polarizatiorn must be calculated. In principle, it would be

possible to calculate the ionic effect by finding the shift in the equilibrium
position of the chromium ion under an electrostatic perturbation. From

this calculation the ionic component of the dielectric constant could be
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calculated as a check on the accuracy of the method. The perturbation

should also yield the electric field induced shift in the spectral lines, the

electric field effects. Unfortunately, the equilibrium position of the

chromium calculated in the distorted oxygen octahedron alone is far from

the equilibrium position of aluminum in the solid as determined by X-ray

diffraction. From the displacement effects on the spectrum as given in

Table 4-iU, however, the position of the chrognium can not be far from the

aluminum position in the solid. Apparently,the equilibrium position is

determined by more than just the nearest neighbor oxygen ionm. Since the

MO program is limited in the number of atoms which can be considered,

it was concluded that it is not possible to calculate a meaningful equilibrium

configuration for complexes of such a low symmetry without the influence

of the surrounding crystal.

The ionic electric field effect was calculated by noting that the

ionic dielectric displacement may be calculated from the dielectric

constant, as given in Table 4-1. The perturbation of D due to such a

j displacement was calculated simply by repeating the MO program with

displaced coordinates. The results are given in Table 4-IU and are in

good agreement with the experimental results. Note that while the

value of D calculated is sensitive to displacement of the initial position

of the chromium along the z-axis, the electric field effect 8D is not.
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Thus, the agreement of the electric field effect with experiment is much

stronger evidence for the validity of the molecular orbital method.

The electronic effect proved somewhat more tedious to calculate,

because the effects of V" = eEffz had to be evaluated between all of the

MO's calculated with fixed coordinates. It proved more convenient to use

the AO's as a basis set but to include a crystal field whose magnitude was

such as to produce the observed mixing of the AO's in the MOIs . Second-

order perturbation theory on the AO basis set was done using V' u andcr

V" once each. The results were OD = -10 x 10"5 cm"I for 10 v/cm as

compared with a calculated ionic effect of +77 x 10"5 cmI . The electronic

effect so calculated corresponds essentially to the theory of Artman and

Murphy but without the exceptionally large spin-orbit parameter and without

the scaling by a factor of four on the applied field matrix elements as

introduced in their theory. These terms represent a direct effect of the

applied field in mixing the AO's . These calculations also yielded the

electronic polarization of each of the ions and,hence, the index of refraction

n2 -1 = 3.8 . The major contribution comes from the oxygen ion, which

means that a comparison with the experimental index of refraction of

Al 203, n -1 = 2. 1, shows the validity,but relatively poor accuracy,of the

method.

However, going to higher order in V' u in the perturbation
r ycr

S~theory yielded additional terms in the electric field effect, which made
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the total electronic effect 8D +10 x 10- cm 1  These higher terms

were not evaluated by the usual methods but rather by noting that they

correspond to the fact that the two ions polarize their electron clouds

by different amounts and that this relative displacement alters the overlap

interaction between the ions. The effect of this electronic motion of the

two ions is the same as that which occurs for the ionic polarization, and the

displacement results were used to evaluate this part of the electronic effect.

As can be seen from Table 4-I1, the ionic effect dominates the electronic

effect, even allowing for the fact that the electronic effect was only crudely

evaluated, probably with an uncertainty of a factor of two or so. Because

of the dominance of the ionic effect, the electronic effect in ruby will be

neglected henceforth. The effective field used in these calculations of the

electronic effect was

E + 2 E (4-68)

""eff 3

This is in line with Eqs. 4-28 and 4-29

The remaining terms: of the R-tensor for the ionic effect were

calculated by the molecular orbital method by introducing displacements

in the x- and y- directions. In analogy with Eq. 4-65, it can be shown by

the method of irreducible tensor operators that the elements of the R-tensor

are given by the following relations.
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Rijk ; 4 Rijk (Xt)((W(4A) - W(-4T2 t 2)]

[W( 4 A) W( 2 T 2 , tz2 e)

4 2 3 -
-3R.

-3Rijk (k) [W( A) - W( T 2 , t 2 ) ] (4-69)

Rijk (X) is given in Table 4-111

Table 4-I1, Rijk (k) in Eq. (4-69)

Displacement along x iz

R I (k•. x
2  

, 22

RlZ 3(X) W yk2

yz

R 113(k) 2X x Xzk

R 3 3 3 (X) 2"•Z-

R 112 (k)(= -2R 2 2 2 ) 2X). Xy

R212 (= -2R 1 1 1 ) 2X x x y

R223( (k RI 13) 2XyXz

R 213-(X) - R123) 2)..X"z

* also, subtract 2 D '(unisplaced)
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Signs are correct for an a-site in Fig. 3-4. Furthermore, in analogy with

4-66, 4-67, the products in Table 4-ill are calculated according to

E= eel<G It 2zp> < t2ZpAI ea > (4-70)

= A. X <t 2Pllit 2 Y> < tzr11 It2?> P (4-71)

Results of such calculations are shown in Table 4-1V.

Table 4-IV, Calculated values of the elements of the R-tensor

(ionic effect only).

Experiment C 3 (4s 4p) C 3 (49 4p) + 4A1

R ill-.020 + .003 -. 017 -.017

R +.073 + .003 .053 .049

R3 3 3  .179 + .003 .154 .160

R +.04 + .02 .008 .010

R 1 1 3  .09 4 .02 .092 .101

Units are Mc/sec per kv/cm

The agreement with experiment is better than there is good reason to

expect, the only significant discrepancy being RI 2 3 . The electronic

effect probably adds 5 o% to 10 °7o to these values (see Table 4-U1).

Note that all sign,4 are in agreement with experiment, both for D and for

componentuof the R-tensor.
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In an attempt to get better agreement with experiment the

calculation was extended to include four additional aluminum next nearest

neighbors. Aluminum 3a and 3p electrons were included in the MO

j basis set. The results are shown in Tables 4-11 and 4-1V . In general-

there is little change over previous calculations, although the agreement

on R 1 2 3 is slightly improved. Note that R123 would be zero if the local

f site symmetry were C 3 V. The fact that R is experimentally larger
than the value calculated using Al203 coordinates may be an indication

23
that the insertion of the Cr+3 ion in the lattice in place of the smaller

+-3Al ion causes a distortion of the site which makes the C3 site symmetry

less like a C 3V symmetry. Presumably, refmaining discrepancies arise

from more fundamental limitations of the method.

In the calculations which included aluminum ions it was necessary

to adjust the aluminum-oxygen interaction by adjusting the diagonal

elements of the aluminum AO's in the approximate Hamiltonian. The

contact hyperfine interaction of the predominantly3d MOts on the aluminur

nuclei is given by

wC= <A> I. 5, (4-72)

where

A - g 8(r). (4-73)
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If the density of the 3s aluminum AO at the aluminum nucleus is taken as

15 x 102 4 /cc, < 8 (r) > is simply this number times the square of the 3s

coefficient in the predominantly 3d MO. With a suitable aluminum-oxygen

interaction, A for the aluminum nucleus in the same plane as the chromium

was calculated am 3. 7 Mc/sec, in good agreement with the observed value

[4-44] of 3.24 Mc/sec obtained in an ENDOR experiment. This agreement

assures that the aluminum-oxygen interaction is of a reasonable value.

In discussing the ionic electric field effectit has been astumed that

the ionic polarizability of chromium in the Al 2 0 3 lattice is the same as

that of alu.nLnum in the same lattice. Recentlythe dielectric constants of

Cr 2 0 3 (having the same structure as Al 2 0 3 ) have been measured [4-45] as

13.3 and 11.9 , compared to 8.6 and 10.55 for Al 203 . If the polar-

izability of chromium in the Al 203 lattice is the same as in the Cr 2 0 3

lattice, the ionic polarizabilities and, hence, the calculated ionic electric

.,eld effects would increase by 86 0 and 187 perpendicular and parallel

to the c-axis, respectively. However, the interatomic Cr - 0 spacing in the

Al 2 0 3 lattice is probably nearer to the Al - 0 spacing in Al 2 0 3 than to the

Cr - O spacing in Cr 2 03 , and this would tend to make the chromium polar-

izability closer to that for aluminum. The agreement with experiment of

the originally calculated electric field effect (calculated using the Al 2 0 3

dielectric constants) is not close enough to shed much light on this question.

The proper polarizability to use in these calculations is probably an inter-

mediate value.
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j Improved Theory of MgO:Cr

Following the method used in the successful calculations for the

optical spectrum of ruby by Sugano and Tanabe [4-16] , we now consider

MgO: Cr in the strong field approximation. This will allow extension to the

semi-empirical molecular orbital formulation. The one-electron wave

functions in the strong field imit are split as shown in Fig. 4-3 (see also

Fig. 4-1 for ruby).

i

ab I

lODq

2/ 3K1

b2

Figure 4-3, One-electron splittings in MgO:Cr in cubic and

tetragonal fields.

Three-electron states have an energy level diagram similar to Fig. 4-2

for ruby, if it is assumed that the electron repulsion terms are similar to

those in ruby.

If the cubic crystal field splitting is calculated by a point-charge

model, 1ODq is almost an order of magnitude too small to account for the

optical splitting of 15, 000 cm, 1 obtained by noting that the crystals are
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preen. The magnitude of the cubic field splitting 1ODq may be accounted

for on a covalent model, however, as was done for ruby. From the

preceding discussion of ruby in the molecular orbital formulation, it appears

that D should arise mainly from the anisotropic spin-orbit interaction due

to covalent effects. To test these ideas, molecular orbital calculations were

performed on a CrO6 " 9 complex with coordinates taken from MgO. The

complex was stretched 0. 1 A along the Cr-vacancy axis to simulate the

tetragonal distortion of the octahedron which might exist due to the charge

compensating vacancy on the far side of one oxygen. 1ODq was calculated

as 10, 500 cm"1 in fair agreement with a probable true value of less than
-1

15, 000 cm . No adjustment of parameters was made in this calculation,

the wave functions being identical to those used in the ruby calculation. The

discrepancy probably reflects the fact that the ionic radius of the chromium

is smaller than that of the magnesium it replaces. This should cause the

oxygen ions to move closer to the chromium than the coordinates used

would indicate.

The tetragonal splitting of the ground state 2D was calculated by

Eq. 4-65 and came to only 1/10 of the observed value! It seems

unreasonable to assume a large covalent effect from a next nearest

neighbor vacancy, especially since next neighbor effects in ruby were found

to be so small. Thus, the molecular orbital theory accounts nicely for the

cubic splitting of MgO:Cr but fails completely in accounting for the

tetragonal splitting. Apparently the axial splitting is due almost completely

to the electrostatic field from the charged vacancy.
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A purely electrostatic calculation of the matrix elements of the field
-1

from a point charge located at the site of the vacancy given 3K 1 as 390 cm 1

while Eq. 4-44 requires 3K 1 = 960 cm- to account for ground state

splitting of 5. 0 Gc/sec. Equation 4-44 is based on second-order perturbation

loops to only the 4 T 2 (t 2
2 e) levels; whereas for ruby, Sugano and Peter [4-17]

have shown that configuration mixing introduced effects of the 2 T 2(t 2 2e) levels

and may make D much larger without any increase in 3K 1 . An increase in

the calculated value of D by a factor 2. 5 would account for the observed value

and is within the range of effects predicted by Sugano and Peter for ruby.

Turn now to the electric field effect. The ionic effect may be calculated

by an equation of the form of 4-47, except that working with the one electron
-3

functions, one has K oc r0  , other terms being much smaller. Hence, one

has inEq. 4-47, n= 3and 8D = 0.3 Mc/sec.

In evaluating the electronic effect, V' u was estimated from thecr

point-charge model. Using Eqs. 4-44 and 4-49 yields 8D = 0. 6 Mc/sec.

The contribution of V' u to D through Eq. 4-49 has already beencr

included in the value of D previously quoted; this contribution is about

25 % of the total. The total calculated value of the electric field effect

5
is 0.9 Mc/sec for 10 '/cm, which is conveniently not larger than the

experimental upper bound of I Mc/sec at 105 v/cm.
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Quadratic Electric Field Effects in Ruby and MgO

Weger and Feher [4-46] have observed quadratic electric field effects

in the Cr+3 EPR in ruby and MgO:Cr. In order to observe small effects, they

used a modulation technique similar to those described in Chapter II. AC

fields of 105 v/cm were used. Phase detection at twice the modulation

frequency gave an absorption derivative shaped line for a quadratically

shifted resonance and a dispersion derivative shaped line for a quadratically

broadened line.

It has been previously noted that in systems such as Al 2 0 3:Cr and

MgO:Cr, the total lattice has an inversion center, though the individual

sites do not. This means that if one site exhibits a linear shift in resonance

frequency, the other site must exhibit a similar shift in the opposite direction.

If the resultant splitting is less than one line width, there will be observed

only a broadening of the line proportional to the square of the applied field.

This quadratic broadening was frequently observed in determining the

transverse and skew components of the R-tenhor for ruby, as descxibed

in Chapter II. Taking the applied electric and magnetic fields along the

c- or s-axis, the 1/2-3/2 transition will show a quadratic broadening (and

eventually a linear splitting) from a term in the spin Hamiltonian

R ijkE iS . The T-tensor described in Chapter III is associated with

terms of the form TijkEiSjHk and might also contribute to the quadratic
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broadening of the 1/2-- 3/2 transition. In addition, it should also produce

a quadratic broadening of the 1/2 - -1/2 transition.

Weger and Feher observed no quadratic broadening of the 1/2 -. -1/2

transition but did observe a quadratic shift of 0. 1 gauss for 105 v/cm. They

attribute this shift of the 1/2 -. -1/2 transition to strains in the crystal which

produce terms in the spin Hamiltonian having only off-diagonal elements. In

second order, these terms then produce a shift proportional to E 2 . Such a

quadratic shift of the 1/2 -. -1/2 transition was observed by Weger and

Feher for Cr+3 , Fe+3 and Mn+2 in MgO , also, and in all cases attributed

to strains.

Co+2 in MgO has an effective spin of 1/2 and may not shnw the

strain effects exhibited by the other ions. For a field of 18, 000 v/cm,

Weger and Feher observed a shift of 1/2 milligauss for (,o+2 and attribute

this to a true quadratic effect.

Weger and Feher have also observed a linear splitting (actually a

quadratic broadening) in MgO for a line 13 gauss above the Cr+3 1/2 -. -1/2

transition. They have attributed this line to a defect center similar to that

studied in the present work. Presumabl1, the charge compensating vacancy

is much farther removed from the site in order to reduce the zero-field

splitting to the observed value. However, if this were the case, there

should be a second line at 13 gauss on the other side of the Cr+3 1/2 -- -1/2

line, and this does not appear. Apparently, in this case, Weger and Feher

have observed an electric field effect on a line originating from some unknown

impurity.



4-54

Quadratic electric field effects in TiO2 :Cr and TiO2 :Fe are

discussed in Chaper V.

Discussion and Conclusions

The use of a molecular orbital approach in the ligand field problem

does not imply that binding in the material is entirely covalent. Van Vleck

[4-8] has pointed out that the molecular orbital method is a general one, and

that the purely ionic crystal field scheme and the purely covalent valence

bond scheme are the two limiting cases included in a molecular orbital

calculation. In the molecular orbital method, the expansion of the molecular

orbital in terms of an atomic orbital basis set is in terms of coefficients

which may take on any values from zero to one (subject to the normalization

condition), and these variable values of the coefficients may represent

any "degree of covalency" one wishes. Actuallythe bonding of the

chromium in the A1 2 0 3 oxygen sublattice is primarily ionic since the

coefficients of ligand AO's in the predominantly 3d MO's are typically of

the order 0.05.

What is suggested by the calculations which have been exhibited

here, as well as by earlier molecular orbital calculations, [4-7, 42, 43]

is first, the incompleteness of the concept of the "crystal field" arising

from the classical electrostatic field of the ligands interacting on the
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chromophoric electrons. The work of Kleiner [4-6] already showed that this

was the case. As a result of these difficulties, there arose a crystal field

method [4-1] in which the strength of the crystal field was taken as an

adjustable parameter, and this, together with symmetry arguments, allowed

an explanation of the origin of spectra in solids. In general, fields were

calculated by a point-charge model and then scaled upwards by a factor of the

L order four or so. A more complete picture of the ligand field, suggested

by this work, has the ligand field arising primarily from the repulsive

covalent interaction of the ligand electrons on the chromophoric electrons;

the attractive force holding the supposedly ionic crystal together is still

the electrostatic attraction of the charged ions. (We are not speaking here

of truly covalent solids, such as GaAs, but only of solids which are normally

considered primarily ionic, such as NaCi or Al 2 0 3 . ) The adjustable

magnitude in the crystal field theory presumably takes this effect into

account, though a molecular orbital calculation would obviously be a better

way to handle the problem.

However, when the tlectric field effect is considered, even this

modified form of the crystal field theory is in trouble. The electric field

effect is accounted for [4-19] in the crystal field scheme only at _e

sacrifice of reasonableness of the spin-orbit parameter. While it is true

that such a theory is internally self consistent, it is far from being in
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agreement with external data. The second suggestion arising from the

calculations made here is that the splitting of the 4A ground state of Cr+3

in ruby and the electric field effects on this splitting are due primarily to

covalent effects producing an anisotropic spin-orbit interaction. In this

calculation the modified crystal field theory is quite inadequate, unless

an artificial spin-orbit anisotropy parameter is introduced.

It should be emphasized that the calculations done here are semi-

empirical in naturei the correct molecular orbital problem has not been

solved. The success of these calculations is taken to reflect the closeness

of the semi-empirical approximation to the correct molecular orbital

formulation and to reflect the correctness of the molecular orbital approach.
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Note added: N. Wiser [Phys. Rev. 129, 62 (1963)] has considered the

problem of local fields in the calculation of dielectric constants. His conclusions

are in agreement with those presented here, but his arguments are much more

explicit. He shows that for solids where the weak binding approximation is

valid (covalent solids), the appropriate local field is just the macroscopic field,

while for solids where the tight binding approximation is valid (ionic solids),

the Lorentz effective field is correct. For the contribution to the dielectric

constant of conduction electrons, he shows that the correct effective field is

the macroscopic field. Finally, Wiser points out that the appropriate average

of the microscopic field used to obtain the effective field is an average weighted

by the local electronic polarizability. This is not the same as the average

appropriate for calculating the force on an electror. In this work, the

distinction between these averages is not made.



Chapter V

THEORY OF THE QUADRATIC ELECTRIC FIELD EFFECT

IN TiO2 :.Cr AND TiO :Fe

Titanium dioxide has an unusually large dielectric constant, though

the material is not ferroelectric [5-1]. The large dielectric constant

suggested that this material should exhibit a large electric field effect on

the paramagnetic resonance of impurities.

Fe+3 and Crt 3 substitute for titanium in TiO 2 at a site which is

a center of inversion symmetry. Such a site may not show a linear electric

field effect but may show a quadratic effect. There are two magnetic sites

per unit cell, each with its y-axis along the crystallographic tetragonal

c-axis. The sites themselves are of orthorhombic symmetry [5-2],with

the z-axis of one and the x-axis of the other parallel and along a 110 direction.

Figure 5-1 shows the local geometry of the site and the coordinate system

used in this work. The y- or c-axis is normal to the x- and z- axes as

shown, and displacements 8 along the c-axis will be considered. Four

oxygen ligands are at a distance b , and two are at a distance a . Let

S= a - b . The four oxygen ions equidistant from the metal are in a

rectangular rather than a square arrangement.

5-1
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Figure 5-1) Ti site in TiO2 1

The perturbing spin Hamiltonian is of the form

•' = • -• ijkl E-iFj (Skof + StSk) 5I
i~j

k_<1

including only quadratic spin terms. Since the local site symmetry is

DZh , the non-zero elements of the R-tensor are R 1 1 1 1 , R 222 R33331

R 1 1 2 2 R 2 2 1 1, R 1 1 3 3 R3 3 1 1, R 2 2 3 3 R 3 32 2 , R 1 2 1 2 $ R 1 3 1 3 v R2 3 2 3  The

trace relation

E R =0 (5-2)
k Ijkk
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eliminates three components leaving six independent components. In this

work, only the case where the applied electric field is parallel to the

y-axis will be considered. Only two independent components are then

involved and are redefined as follows,

GD = R2 2 3 3 - - (R2 2 1 1 + R 2 2 2 2  (5-3)

8E = (R 22 1 1 - R 2 2 2 2 ) . (5-4)

Molecular Orbital Theory for TiO2 : Cr
A crystal field theory of TiO 2:Cr would be similar to that presented

in Chapter IV for ruby. In view of the difficulties encountered by this theory

in accounting for the crystal field splittings and the electric field effect in

ruby, the theory has not been worked out for TiO2 :Cr.

A semi-empirical molecular orbital theory for TiO2 :Cr was worked

out by Lohr [5-3] along the lines of the theory for ruby. These calculations

are here extended to include the electric field effect. The spin Hamiltonian

for TiO2 :Cr is of the following form [5-4],where the effective spin is 3/2

3C= gPHS+D[S _ S(S + 1,] + E(S2 S 2 ) (5-5)-l=gH. D -1]

D= 0.68cm"1 and E=0.14cm". In analogy with EV. 4-65, D and E

are given by the relations below, where the usual irreducible tensorial

method has been used [5-5].
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D 4 [(k 1)2 I (X 1)-2 1 (X 1)2 xz 2 x - y

[W( 4 A2 1 A W( 4 T 2, t 2
2 e)] - [W( 4 A 2 -) W( 2 T 2 , t 2

2 e)] -
1 2 1 2

-3[(•)z) - -(•x) - -•-X) ]
3- ]

[W( 4 A) - W( 2 T , t2 2] , (5-6)

E= 2[(X ')2 -(ky,12 ] x

{[W(4A2 ) - W(4T 2 t 2 2e)]- [W(4 A 2 ) W12 T 2 , t 2 2e)] }
"3 [()Xx)2  (X )2] [W( 4

2 1 - W(2 T2 , t 2
3 1]- (5-7)

• 2 = .X and (X i)2 X ) .x i are given byEqs. 4-70 and 4-71

The results of such a calculation are D = 0.45 cm"1 and E = 0.16 cm-1

in satisfactory agreement with experiment. The same parameters and wave

functions as for ruby were used; only the site geometry was changed.

The ionic electric field effect was calculated as 8D = 1. 1 x 10" 4 cm" 1

and 8E = 0. 03 x 10.4 cm"1 for an applied field of 50 kv/cm. Dielectric

parameters for TiO2 from Table 4-I were used in the calculation, which

is equivalent to assuming that the ionic polarizability of chromium in the

TiO2 lattice is the same as that of titanium. This may well overestimate

the dielectric displacement by as much as a factor of ten, and hence, the

electric field effect by a factor of 100.
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Crystal Field Theory for TiO2 : Fe

The spin Hamiltonian for TiO2 Fe is of the form [5-6] below,

where the effective spin is 5/2 .

3C = gpH.S+D[Sz_ I S(S+ l)]+E(S2Z _SZ)

+ 1 a [Sx 4 +S y S 4 _ 1-S(S + L)(3S2 + 35 -1)

+ 7 F (Ss + -5 _ 6S (S + l))S

"6 S (S + 1) + 3 S2 (S + l)}2 (5-8)

D= 0.69 cm" , E = 0.073 cml a= 0.036 cm , F-= 0.017 cml 1 In

thi' work only the terms quadratic in S will be considered as these are

the largest terms.

Now according to Watanabe (5-7],the second-order spin terms

in the spin Hamiltonian arise from the fourth-order perturbation expression

mom, <6S-D < /MI' /

<4 PS/M Ivr 14DJ.M" > <4 DTN MN I W 1'P4/ 2 M' > x

<4P 5/ 2M' I),LS s 6 S/ZM' m , (5-9)
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where the tables of Racah [5-8] have been used. Further, by the use of Racah's

tables and the irreducible tensorial method [5-5] , the following expressions

may be obtained. Differences in the energy denominators in the sum have

been ignored.

D = K [-2IA 12 + IAl I? + IA012  (5-10)

E = -(K/3) [,/- XReA2A.0 + 3iA i2] (5-11)

Equation 4-4 has been rewritten in the form

Vr = Ze 2 0 A I A m y (Q104 <r I>,1-2

A, m

= M 40 --+r (5-13)

n

Only the I = 2 terms have been considered under the assumption that

A = 4 and higher terms will be smaller because of the factor < r1 >/rn1+1

The constant K was not evaluated because of uncertainties in energy

denominators, spin-orbit energies, and above all, because from previous

experience an arbitrary constant is needed to get good results from a

point-charge model. Keeping only terms quadratic in 8 , one obtains the

following expressions. -
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0 10 51 2 27 2(8,2]
A2  a~[()6 .--- +-

a
At1 = 0

9±28~ 1 82'6'6AI 2 A) 1 - +'a- 2-.(-- 5 -14)
a

Substituting in Eqs. 5-10 and 5-11 yields

D=Ka'6{-18(--)2 + 24Q2 +

S÷( )2 [27 +,,- ÷ 186a + 162 - - )a + 108 2 , 5-15)
a a a

E =Ka 6 8 (L.)2 - 2402 + 24(A-)
La a

a+--- [93-- + 54- (-) - 108%7] - (5-16)

Now approximately [5-2] (4/a) = 0. 05 and a = 0.09, which yields the result

D = Ka"6 [0.48 + 19.7 (_-)2(] (5-17)

E=Ka" 6 [0.04 - 8. 31(- ] 15-18)

ExperimentallyD = 0. 68 cm"1 and E = 0. 073 cm 1. Fitting Ka-6 to

D gives Ka6 = 1.42 cm- from 5-17 . Then from 5,18 one obtains

E-= 0. 057 cm , which is in adequate agreement with experiment

considering uncertainties in the unit cell parameters.

Now consider a field of 50 kv/cm. From Table 4-1 it is easy to

obtain (8 /a) = 6x 104 or (8/a)2 = 3.3x 10 7. Hence, 8D= 0.9Zx

I0" cm and 8E = 0. 11 x 10 5 cm . Taking the magnetic field along
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the x- or y-axis,, respectively, and considering the Zeeman splitting to be

small compared to the zero-field splitting, for the I/2 -- - 1/2 transition

in first order, the effective g is given by

geff ( (5-19)

But

hv =gffpHow 6 (1 4-U)PH (5-20)

Therefore,

8V OE 8D )E 1 I-: E (-l1-f--.--f- -U -- T- -U. 5-1

For H parallel to x, 8 v/v = 3 x 10"5, while for H parallel to y,

OY/v = I x I0", all for 50 kv/cm.

Powell, Gabriel, and Johnson [5-9] have included excited spin

doublets as well as the excited quartets in calculating the cubic term a/6, but

such terms are probably not important for the orthorhombic terms D and

E . In the molecular orbital formulation to be presented, the doublets do

not contribute at all.

Molecular Orbital Theory for TiO2 :Fe

Semi-empirical molecular orbital calculations were performed for

Fe+3 (d ) in the TiO2 lattice using the same program as for Cr+3 in 4

TiO2 and using the same one-electron wave functions as for Cr+3
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The spin-orbit interaction connects the 6AI, t 2 3 ground state

only.to the 4 TI, t23e2 levels [S-S], resulting in the following expressions

for D and E.

D=-.- I )2- I2(C) 2 ) 2. [,w(6 A ) W(4 T 1) ]- , (5-22)

E= 1[•)2 - )2y ] [ W A6 d) - W( 4 T ) 1 . (5-23)
yI

2((i) is given by

2112=;2 <t aj•[t2F><t,,Pli It:4 > (S-24)

For .W(4 Td) - W( 6A ) = 12,000 cm"I and 2 = Z70 cm- I (reduced from the

free ion value of 360 cm 1I --- seethe discussion of a similar reduction

in the case of rub.y, Chapter IV), Eqs. 5-22 and %.23 yield D = 0. 31 cm

and E = 0.11 cm" 1 as compared to ,the experimental values of D = 0. 68 cm" 1

andE = 0.073 cm'. The agreement with experiment seems adequate when

it is recalled that no parameter has been fitted to a magnetic resonance result.

The ionic electric field effect was calculated for 50 kv/cm using

the assumption that the ionic polarinability of iron in the TiO2 lattice

is the same as -hat of titanium, as was done in the previous section. The

paramsetqrs of Table 4-I for TiO2 were used. The results are GD a 0.94 x

10-4 cmr" and CZ = 0.02 x 10.4 cm"I. Using Eq. 5-21 yields SY/v = 2 x

10 4 for H parallel to x and 6 /v=x=I104 for Hparalleltoy.
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Note that as might have been expected from the ruby calculations, these

figures are an order of magnitude larger than those obtained in the crystal

field calculation, Experimentally, for H along x, 8 Y/Y < 1 x 10.5

twenty times smaller than the calculated value. This is probably an

indication that the ionic polarizability of the iron in the TiO lattice is2

considerably less than the polarizability of titanium in that ltttice.

Recently, Wemple [5-10] has observed a large quadratic effect on the

iron paramagnetic resonance in KTaO :Fe+3 . He observe ' SD = 10' cm3.

for 13 kv/cm. Since the material is paraelectric, the ionic polarizability of

the iron in the KTaO 3 lattice would seem to be large, as is the tantalum

polarizability. This is somewhat different from the result for TiO 2 :Fe.

Wemple has explained the large effect as arising from electrostriction

rather than the optical mode distortion considered in this work.



Chapter VI

ON THE ELECTRIC DIPOLE MOMENT OF THE ELECTROID

The implications of the existence of an electric dipole moment for the

electron have been examined by Salpeter [6-1] and by Feinberg [6-2], who

have calculated the resultant change in the Lamb shift. From experimental

measurements of the Lamb shift they have placed an upper bound on the value

of the electronic electric dipole moment. Salpeter has also calculated upper

bounds for the dipole moment from the absence of K-L1 x-ray transitions in

heavy atoms, the hyperfine splitting of the positronium ground state, and the

metastable Zs-state in hydrogen. When this work was startedthe lowest

previous upper bound had been set by the free electron experiment of Nelson

et al. [6-3]. Since then Wilkinson et al. [6- 4 ] have repeated Nelson's

experiment obtaining the lowest upper bound so far set. Table 6-1

summarizes these results.

Landau and Lee and Yang [6- 5] have shown that for en elementary

particle to possess an electric dipole moment there is required the non-

conservation of both parity and time-reversal symmetry. In view of this fact

it seems desirable to determine the experimental upper bound on -he dipole

moment of the various elementary particles as accurately as possible. An

upper bound on the electric dipole moment of the proton has been set by

Sternheimer [6-6], on the neutron by Smith, Purcell and Ramsey (6-7], on

the muon by Berley, et al. [6-8], and on the positron by Salpeter [6-1]. The

limits set for the neutron and muon are from free particle experiments,

while the proton limit was set by considerations of the Lamb shift. The

results are listed in Table 6-11 .

6-1
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A new upper bound was set for the electric dipole moment of the

electron by the use of the electric field effect in ruby. The existence of an

electronic electric dipole moment should cause ; lifting of the Kramers"

degeneracy and hence, a shift in the resonance frequency under the application

of an electric field. By verifying the Kramers degeneracy it was possible to

show that the dipole moment is zero to the accuracy of the experiment. The

electric field effect described previously in ruby will be termed the ordinary

electric field effect (Chapters III and IV ) This experiment separates the

ordinary effect from the dipole-dependent effect by reversing the polarity of

the applied electric and magnetic fields, since the two effects have different

dependences on these field polarities.

Theoretical Considerations

Sachs and Schwebel [6-10] have treated the implications of an electronic

electric dipole moment on the energy levels of a paramagnetic ion. The

following treatment is an elaboration of their work. Consider the usual

Hamiltonian for an electron bound to an atom in a predominantly ionic crystal.

C= - (0/2 /m) V 2 + e - iek 2s" (V4) xV. (6-1)

The terms are, respectively, the kinetic, potential, and spin-orbit energies,

k = K/2mc) . The potential energy may be divided into terms arising from

the nuclear charge, from the charges of other electrons, and from the

c rystalline electric field.

4 +nuc e + - + (6-2)



Table 6-I . Electronic electric dipole moment

Experiment Reference

Metastable 2s-state in 6-1 <1. 2 x 10"12 cm e
atomic hydrogen

Hyperfine splitting of 6-1 < 8 x 10"13 cm e
positronium ground state

Absence of K-.L 1 transitions 6-1 < 2 x 10"13 cm e
in heavy atoms

Lamb shift 6-i, 6-2 <I. 5 x 10-13 cm e

Kramers degeneracy 6-11 <1. 4 x 10"13 cm e

Free electron 6-3 < 4x 10"is cm. e

Kramers degeneracy this work <1.4 x 10is cm e

Electron scattering 6-9 < 1 x 10-l 5 cm e

Free electron 6-4 < Sx 10"16 cm e

Table 6-I1. Electric dipole moments of the elementary particles

Particle Reference

Electron 6-4 < 5x 10-16 cm e

-13
Positron 6-1 < 8 x 1" cm e

Proton 6-6 <1.3 x 10-13 cm e

Neutron 6-7 < 5 x 10.2 cm e

Muon 6-8 < 2lx 10"scm e
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The first three terms have even parity; the last has odd parity. The usetU.

procedure for simplifying the spin-orbit term is to consider V to be

predominantlUy radial. This gives

-iek •s (- 1 rx V

= • s , (6-3)

where

2ek (6-4)

Now consider a set of wave functions which are eigenfunctions of

the Hamiltonian

3o=- (sZ/Zm)V2 + e4g - iek 2a (V4g) xV (6-5)

This Hamiltonian commutes with the parity operator and is all of even parity.

Hence, the resulting eigenfunctions will also be eigenfunctions of the parity

operator. Consider further the perturbing Hamiltonian
•' = - S 2s (V) + eru - iek 2s - (V~u )xV (6-6)

0 W Mcr k" ^'Cr 04

The last two terms result simply from the addition of the odd part of the

crystal field. The first term comes from assuming the electron to have an

intrinsic electric dipole moment P = 2 Cpos, where yo is the Bohr

magneton. This term will lift the Kramers degeneracy. Equation 6-6 may

be rewritten following Sachs and Schwebel

CA e•-e1[2s e V, eXu ] +iek [2s ', 2 (u (Vc x V ] +

+ [28 V , eý u 1jj+ ecr - iek 2s (V+ U.xv. (6-7)



6-4

To see this, note that

[2.. X, -2 /2m)V 2 ) - 0 , (6-8)

and that

[26s 7, eýjj=2es. - Zee.4

= Zes. (V) (6-9)

In first order evaluate 3X' between the eigenfunctions of 3o 0 , which

are also eigenfunctions of the parity operator since XC commutes with the

parity operator. Terms one, two, four, and five of Eq. 6-7 are all of odd

parity, and hence, cannot yield a non-zero diagonal element. The third

term gives a contribution

A W -- - Y °2. V r (6-10)

In second order, use the odd terms in pairs, keeping in mind that the only

contributions of interest are those linear in J and a . The dominant term

of this form is

A w= -e e' {< nl[Z" V, Xo ]lIn'><n'le~r In > +

+ complex conjugates (Wn - Wn,)"

n n

= . Eue'- {(Wn Wn) < nlZ's Vin'><nle$r In>+

+ (Wn- Wn,) < nleUr In' >< n' " .VIn > x

x (W - Wn

= CI <nl2s I M'4Ur)ln > (6-11)

Note that this just cancels the contribution from 6-10
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The only other second-order contribution of importance comes from the spin-

orbit interactions as shown below. Other second-order terms have been

evaluated but are not discussed here since they are much smaller.

&W=-JJA e1o I (iek){< n1[ 2. V, 2s (V4g) XJn' > x

x <n' I e4r In > + c.c.J (Wn- Wn,)(6-1)

But also, Sachs and Schwebel give the identity

(2s. ,)(2s b) - a. b + i2, •xb, (6-13)

which reduces Eq. 6-12 to

A W= ok(Wn - Wn,') Q[< nl2s. Vx [(V49) x'&]lnt > -

- < nl2." [(V49) x V] x Y In'>) < n'e4r I n > +

in' >( < n'12s. Vx [(V49 ) x I n > -

-<nz U1 • x V I xv VlI n > ]• .(6-14)

The last two terms are the complex conjugate written out explicitly. Working

with real wave functions, these terms-may be omitted if the remaining terms

are multiplied by two. Apparently, the second and fourth terms, arising from

the comnnutator, have been omitted by Sachs and Schwebel. The use of

Eqs. 6-3 and 6-4 gives

= O (Wn . Wn' )l{< . !x'i In > -

-< nia. irx Vin' >J < n'lU In> (6-15)
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Taking the z-axis along a allows 6-1 5 to be written in component form.

AW= 2fgO (W - WnXIsz .< nI-L 'n"> <11CII n1>-

- < n -LI ns >< n"IxtIf n- >-
ay

- < njiC1 I n" >< n" -!-I n' > +x ey+ < njiC1 n"- >< n"- -L- I n- > 1<n' 14ur I n >. (6-16).

In this form, Eq. 6-15 was evaluated numerically using parameters derived

from optical spectra and using the Slater type wave functions of Chapter IV

to evaluate matrix elements of z . The crystal field was evaluated at the

nucleus from a purely electrostatic model.

Define a tensor A by the relation

< Vý u-r" E > A = -11• d/3)_
&c r Z Y-{~ Ixl.El u > ( Cu/3

<3d Initvl U>(r 3d/3) <ulie- eErI3dn>x

x (Wd - Wu)- 1  , (6-17)

where E is a possible applied electric field. The tensor A has only

diagonal elements non-zero, and furthermore Axx = A yy A .z4

Now consider the three unpaired chromium 3d electrons,

3A W 2C= E 8•# n (3nA •V ýU- E >
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In the spin Hamiltonian formulation describing the spin-dependent energy

levels of the ground state, simply add this term to the Hamiltonian. For

ruby, V4U is predominantly directed along the c- or z-axis, so onlycr

( nAn)zz is of interest. From equation (6-16, this is calculated to be

1.15 x 103 , with a probable error of a factor of two. Note that because

cr< VU> dominates, the largest effect of the electric dipole will come if thecrz

applied magnetic field is also along the z-axis. The major contributions to

An come when the odd state u is a 3p-, 4p-, or 4f-state. Other chromium

states have larger energy denominators and smaller matrix elements to the

ground state. Odd wave functions made up of oxygen molecular orbitals as

in Chapter IV were found to give a negligible contribution because of small

matrix elements.

Experimental Procedure and Results

The electric field effects are introduced into the usual spin Hamiltonian

by the addition of the following perturbation.

3C' = E M (1{/2) RijkEi (SjSk + SkSj)I ij

E- .. 2 (Z A )ijS <V4U "E>.. (6-19)Sij 0 n i r J

The first term represents the ordinary electric fiel I effect, and the

second is the dipole induced effect, which lifts the Kramers degeneracy.

Browne [6-9] has attempted to detect the dipole induced effect experimentally

by applying a uniform electric field to a paramagnetic salt. He modulated
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the resonance of Cr3+ in alum with an applied electric field but could detect

no effect. It is not clear, however, that any effect observed in his

experiment would not be due to the ordinary electric field effect.

However, the term V ur is much larger than any possible appliedHoweer, he trm Vcr

electric field if the paramagnetic site lacks inversion symmetry, as is the

case in ruby. If the -1/2 -- -3/2 transition of Cr 3+ in ruby is observed

with the magnetic field along the z- or c-axis, there should be a shift in

frequency of

8v=h h'l'I3R E - Zpo { znez <cr > . (6- 20)

Assume the dominant part of V+ur to be along the c-axis and take the appliedcr

electric field along the c-axis a& well. Now for both electric and magnetic

fields along the c-axis, the four sites in the Al 203 lattice become equivalent

in pairs. Both terms in (6-20) are of opposite sign for one of these pairs

of sites as compared to the other pair. This is true because V4 u changes
cr

sign on inversion, the two pairs of sites being related by inversion. R is

proportional to V+ru , whereas Enn is not. Thus, 8 v in (6-20).produces

a splitting of the observed resonance line in ruby since the resonance

frequency for the two pairs shifts in opposite directions.

If the direction of the applied magnetic field is reversed, only the

second term in (6-20) will reverse in sign since it is proportional to S

The first term is proportional to S2 . On-the other hand, reversing the

sign of the applied electric field reverses the sign of only the first term
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if one assumes V+ u > > E. Thus, on reversal of either the applied electriccr

or the applied magnetic field, the splitting ( = 21 8 YI) changes by four times

the second term in Eq. (6-20) . If A represents the change on reversal of

either the applied electric or magnetic field,
21 all = 8h 1  u ( 2:An)z <V4Ur >z (6-21)

n

Any possible additional splitting due to the T-tensor terms of Chapter MI

would have the same symmetry as the R-tensor terms as regards the reversal

in sign of either applied field. Hence, possible effects of a T-tensor term

may be lumped with the first term of Eq. 6-20 .

One may inquire as to why any electric field was applied, thereby

introducing the complication of the ordinary electric field effect. The dipole

induced splitting by itself must be assumed to be much smaller than one line-

width, and from the discussion of Chapter III the observed additional broadening

of the line produced by the dipole effect would be proportional to the square

of the effect. Also, there would be no way to 'turn off' the induced broadening.

The ordinary electric field effect is used initially to split the line, in which

case the additional splitting arising from the dipole effect is directly

observable.

In this work the procedure was to observe the electrically induced

line splitting for four cases: (1) electric and magnetic fields normal, (2)

magnetic field reversed, electric field normal, (3) both fields reversed, and

(4) electric field reversed, magnetic field normal. The difference between

the line splittings for the second and fourth cases on the one hand and the
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first and third cases on the other hand is A(28 v) in Eq. (6-21). Experimentally,

this quantity was found to be (0. 025 + 0. 125) gauss or (0. 07 + 0. 35) Mc/sec.

The uncertainty quoted is based on the standard deviation of the results of

eight runs. (SeeChapter II). In Eq. ý6-21. ( J An)zz = 1.15 x 10_ 3and from

a purely electrostatic model V4 U = 3. 6 x 108 v/cm, which yields I
(0. 5 + 2.3) x 10-5. (Taking into account only nearest neighbor oxygen ions

gives VcU = 6 x 108 v/cm , but a lattice sum [6-12] gives the value used.)

Remembering the possible uncertainty in ( • An)zz of a factor of two, it is

possible to say only that I I I is probably less than 3. 5 x 10-5 and almost

certainly less than 7 x 0-5 . The latter corresponds to a dipole moment of

1.4 x 10"15 cm e. Th, upper bound on the electric dipole moment of the

electron is three times better than the best previous published upper bound set

by Nelson, et al., but not as good as the bound of 5 x 10 16cm e set by

Wilkinson, et al.

In view of the extensive molecular orbital theory developed in

Chapter IV, it may seem strange to use simple crystal field theory in calculating

the dipole effect. Unfortunately, while the semi-empirical molecular orbital

theory used is very good in treating the chromium ligand interactions, it is

unsatisfactory in treating the 3d-4p interaction on the chromium, and it is

just this interaction which is needed in calculating the dipole effect. The

electrostatic model used in evaluating 6-16 is probably conservative,

so that using it is to err on the safe side.
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The experimental limitations which prevented a better upper bound to

be set on the electric dipole moment of the electron arise mainly from

instrumental instabilities over the period of a run. More fundamental,

however, is the limitation that this measurement depends on calculation of

"effective fields in a solid, a problem whose solution is beset with considerable

uncertainty. The approximations used in the calculations here are quite crude,

but a better calculationrmust await better wave functions and energy levels

for excited states of an atom in a solid, and a better theory of the crystalline

field.
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